

INTRODUCTION OF HIGH LEVEL

CONCURRENCY SEMANTICS IN
OBJECT ORIENTED LANGUAGES

By
G Stewart von Itzstein

Bachelor of Computer and Information Science (Honours)

A thesis submitted for the Degree of
Doctor of Philosophy

31st December 2004
Adelaide

South Australia

Reconfigurable Computing Laboratory
http://rcl.unisa.edu.au
School of Computing and Information Science
University of South Australia
http://www.vonitzstein.com/research

 ii

TABLE OF CONTENTS

1 INTRODUCTION..1

1.1 INTRODUCTION... 2
1.2 MOTIVATION.. 3
1.3 STRUCTURE OF THESIS... 7
1.4 RESEARCH CONTRIBUTION .. 8

2 LITERATURE REVIEW ...9

2.1 INTRODUCTION... 10
2.2 ABSTRACTIONS OF CONCURRENCY ... 11

2.2.1 Abstraction ..11
2.2.2 The Hierarchy of Abstractions of Concurrency ...12

2.3 PROCESS CALCULI AND THE JOIN CALCULUS.. 17
2.3.1 Introduction...17
2.3.2 Join Calculus...18
2.3.3 Join Syntax ..18
2.3.4 Join Semantics...19
2.3.5 Synchronous Names..20
2.3.6 Join Calculus vs. Other Calculi..21
2.3.7 Summary..21

2.4 THE OBJECT ORIENTED PARADIGM... 22
2.4.1 Advantages of the Object Oriented Paradigms..24
2.4.2 History of Object Oriented Languages ..25
2.4.3 Summary..26

2.5 CONCURRENT OBJECT ORIENTED LANGUAGES... 27
2.5.1 Actor versus Non-Actor Based Concurrent Languages...29
2.5.2 Integrating Concurrency into Object Oriented Languages...30
2.5.3 Defining Mainstream Languages ...31
2.5.4 Implementing Concurrent Object Oriented Languages and Extensions...32
2.5.5 Categorization of Concurrent Object Oriented Languages ..37
2.5.6 Intra-Process Communications ..41

2.6 RELATED WORK .. 43
2.6.1 Similarities between Join Java and Polyphonic C#...43
2.6.2 Differences between Join Java and Polyphonic C#...43
2.6.3 Summary..45

2.7 CONCLUSION.. 46

3 JOIN JAVA SYNTAX AND SEMANTICS..47

3.1 INTRODUCTION... 48
3.2 JAVA LANGUAGE SEMANTICS AND ITS DEFICIENCIES ... 49

3.2.1 Java Concurrency ...49
3.2.2 Synchronization...51
3.2.3 Wait/Notify ..53

3.3 PRINCIPLES FOR IMPROVING JAVA CONCURRENCY SEMANTICS 55
3.3.1 High-Level Requirements ...55
3.3.2 Extension Decisions in Intra-Process Communications..57
3.3.3 Concurrency Semantic Choice ...57

3.4 JOIN JAVA LANGUAGE SEMANTICS.. 59
3.4.1 Changes to the Language ...59
3.4.2 Type System...63
3.4.3 Relation between Join Java and Java ..63
3.4.4 Summary..67

 iii

3.5 CONCLUSION.. 68

4 IMPLEMENTATION ...69

4.1 INTRODUCTION... 70
4.2 COMPILER CHOICE... 71
4.3 TRANSLATOR ... 72

4.3.1 The Extensible Compiler Architecture ...72
4.3.2 Changes to the Extensible Compiler for Join Java..78

4.4 PATTERN MATCHER... 98
4.4.1 Application Programmer Interface for the Pattern Matcher...98
4.4.2 Approaches to Pattern Matching..102
4.4.3 Summary..108

4.5 ISSUES IDENTIFIED IN THE PROTOTYPE.. 109
4.5.1 Multi-Directional Channels..109
4.5.2 Lock Parameter Association...110

4.6 CONCLUSION.. 111

5 DESIGN PATTERNS..113

5.1 INTRODUCTION... 114
5.2 PATTERNS FOR SYNCHRONIZATION ... 115

5.2.1 Scoped Locking ...115
5.2.2 Strategized Locking...116
5.2.3 Thread Safe Interfaces ..121
5.2.4 Double Check Locking Optimization..123

5.3 PATTERNS FOR CONCURRENCY ... 125
5.3.1 Active Object ...125
5.3.2 Futures ..126
5.3.3 Monitor Object..128
5.3.4 Half-Sync/Half-Async ...129
5.3.5 Leader/Follower..134

5.4 SIMPLE CONCURRENCY MECHANISMS .. 136
5.4.1 Semaphores ...136
5.4.2 Timeouts ..138
5.4.3 Channels..140
5.4.4 Producer Consumer..141
5.4.5 Bounded Buffer ...146
5.4.6 Readers Writers...147
5.4.7 Thread Pool...150
5.4.8 Other Patterns...153

5.5 CONCLUSION.. 155

6 CONCURRENCY SEMANTICS...157

6.1 INTRODUCTION... 158
6.2 STATE CHARTS AND DIAGRAMS .. 159

6.2.1 State Diagrams..159
6.2.2 State Charts...162

6.3 PETRI-NETS.. 165
6.3.1 Structures ..165
6.3.2 Unbounded Petri nets ...166
6.3.3 Bounded Petri nets..167
6.3.4 Partial Three Way Handshake Petri net ..169

6.4 CONCLUSION.. 173

7 EVALUATION...174

7.1 INTRODUCTION... 175
7.2 PERFORMANCE... 176

 iv

7.2.1 Pattern Benchmarks..176
7.2.2 Low Level Benchmarks ...178
7.2.3 Compilation Speed ..178
7.2.4 Performance Factors ..179

7.3 EXTENSION EVALUATION .. 182
7.3.1 Modularity...182
7.3.2 Expressive Power..183
7.3.3 Ease of Use..188

7.4 CONCLUSION.. 189

8 CONCLUSION...190

8.1 INTRODUCTION... 191
8.2 CONTRIBUTIONS... 194

8.2.1 Support for Higher-Level Abstractions at Language Level...194
8.2.2 Introduction of Dynamic Channel Creation Semantics into Java ...195
8.2.3 Improved Thread Integration in Java...195
8.2.4 Implementation of Process Calculus Semantics into a Production Language196
8.2.5 Implementation of a Set of Patterns in a New Concurrent Language Join Java196
8.2.6 Close Integration into the Syntax and Semantics of the Base Language ..196
8.2.7 Reduction of Dependency on Low-Level Concurrency Primitives..197
8.2.8 Reduction of Reliance on the Low-Level Synchronization Keywords in Java197
8.2.9 Parameterized Monitors/Parameterized Threads..198
8.2.10 Investigation of Pattern Matchers and Potential Optimizations ..198

8.3 FUTURE WORK... 199
8.3.1 Back-Outs and Lock Checking ...199
8.3.2 Multi-Directional Channels..199
8.3.3 Inheritance ..199
8.3.4 Expanding Pattern Matching..200
8.3.5 Hardware Join Java..200

8.4 CONCLUDING REMARK .. 201

9 INDEX..202

10 REFERENCES..205

 v

LIST OF FIGURES

Figure 1. Erroneous Use of the Synchronized Keyword... 5
Figure 2. Foundation of Concurrency Abstraction...14
Figure 3. Extended Concurrency Abstraction Hierarchy...15
Figure 4. Complete Concurrency Abstraction Hierarchy ..16
Figure 5. Funnel Variant of Join Calculus Syntax..18
Figure 6. Example Join Calculus Expression ...19
Figure 7. Addition of B to CHAM...20
Figure 8. Operational Semantics of the Join Calculus ..20
Figure 9. A partial family tree of object-oriented languages ..25
Figure 10. Evolution of Actor Based Languages...30
Figure 11. Using subclassing in standard Java to achieve multithreading.....................................50
Figure 12. Using interfaces in standard Java to achieve multithreading..50
Figure 13. Accessor Mutator Implementation ...51
Figure 14. Omission of Synchronized Keyword ...52
Figure 15. Dangerous Modification of Monitor Object...53
Figure 16. A Join Java Method..59
Figure 17. Join Java Language Extension Syntax...60
Figure 18. A Join Java Class Declaration...60
Figure 19. Shared Partial Patterns...61
Figure 20. Channel Example Code...62
Figure 21. Thread Example ...63
Figure 22. Polymorphic Join Java Fragments...64
Figure 23. Interfaces in Join Java ..64
Figure 24. Using Interfaces in Join Java ..65
Figure 25. Polymorphism in Join Java ...65
Figure 26. Deadlock in Join Java ..66
Figure 27. Stages of Extensible Compiler without Translation ..73
Figure 28. Abstract Syntax Tree before Syntactic Analysis..74
Figure 29. Abstract Syntax Tree after Semantic Analysis...76
Figure 30. Abstract Syntax Tree after Translation before Silent Semantic Analysis77
Figure 31. Abstract Syntax Tree after Silent Semantic Analysis..78
Figure 32. Structure of the Join Java Compiler ..79
Figure 33. Simple Join Java Hello World Program ...80
Figure 34. Standard Java Abstract Syntax Tree Example...81
Figure 35. Join Java Abstract Syntax Tree Example ...82
Figure 36. Join Java Additions to Java Grammar ..83
Figure 37. Hello World Initializer Method in Translated Code..86
Figure 38. Hello World Dispatch Method in Translated Code ..87
Figure 39. Hello World Notify Translated Code ...88
Figure 40. Hello World Join Method Translated Code..89
Figure 41. Asynchronous Method Source Code..90
Figure 42. Asynchronous Method Translated Code...91
Figure 43. Asynchronous Join Java Pattern Source Code..92
Figure 44. Asynchronous Join Java Pattern Translated Code...92
Figure 45. Synchronous Join Java Source Code...93
Figure 46. Synchronous Join Java Translated Code..94
Figure 47. Base Type Join Java Source Code ...95
Figure 48. Base Type Join Java Translated Code...96

 vi

Figure 49. Repeated Join Fragment Usage Source Code ...96
Figure 50. Repeated Join Fragment Usage Translated Code...97
Figure 51. Internal Representation of Tree Pattern Matcher ..104
Figure 52. Pre-calculated Pattern Matcher ..105
Figure 53. Symmetry before Example ...107
Figure 54. Symmetry after Example...107
Figure 55. Example Multi-Directional Program ..109
Figure 56. Lock Parameter Association Example Code...110
Figure 57. Join Java Scoped Locking Implementation ...116
Figure 58. Java Scoped Locking Implementation..116
Figure 59. Join Java Strategized Locking Library Code..118
Figure 60. Join Java Strategized Locking User Code ..119
Figure 61. Java Strategized Locking Implementation Code ..119
Figure 62. Java Strategized Locking Implementation Code ..120
Figure 63. Java Strategized Locking Use Code ..121
Figure 64. Join Java Thread Safe Interface Code...122
Figure 65. Java Thread Safe Interface Code ...123
Figure 66. Join Java Double Check Locking Optimization Code ..123
Figure 67. Java Double Check Locking Optimization Code...124
Figure 68. Join Java Active Object Code ..125
Figure 69. Java Active Object Code...126
Figure 70. Join Java Futures Code..127
Figure 71. Java Futures Code ..127
Figure 72. Join Java Monitor Object Code ...128
Figure 73. Java Monitor Object Code..129
Figure 74. Join Java Half-Sync/Half-ASync Test Code ...130
Figure 75. Join Java Half-Sync/Half-ASync Services Code ..130
Figure 76. Join Java Half-Sync/Half-ASync Queue and External Source Code131
Figure 77. Java Half-Sync/Half-Async Test Code ..132
Figure 78. Java Half-Sync/Half-Async Service Code ...132
Figure 79. Java Half-Sync/Half-Async Queue Source Code ..133
Figure 80. Java Half-Sync/Half-Async External Source Code ...133
Figure 81. Join Java Leader/Follower Code...134
Figure 82. Java Leader/Follower Code ...135
Figure 83. Join Java Code Emulating Semaphores..137
Figure 84. Java Code Emulating Semaphores ..137
Figure 85. Join Java Timeout...139
Figure 86. Java Timeout ...140
Figure 87. Join Java Uni-Directional Channel..141
Figure 88. Java Uni-Directional Channel ..141
Figure 89. Join Java Producer/Consumer Code..142
Figure 90. Join Java Producer/Consumer Support Code ..143
Figure 91. Java Producer/Consumer Code ..144
Figure 92. Java Producer/Consumer Support Code...145
Figure 93. Join Java Bounded Buffer ...145
Figure 94. Java Bounded Buffer..147
Figure 95. Join Java Reader Writers Source part 1 ..148
Figure 96. Join Java Reader Writers Source part 2 ..148
Figure 97. Java Reader Writers Source part 1...149
Figure 98. Java Reader Writers Source part 2...150
Figure 99. Join Java Thread Pool Source ..151
Figure 100. Java Thread Pool Source...152

 vii

Figure 101. Event Loop Concurrency ...154
Figure 102. Simple State Transition Diagram...160
Figure 103. State Transition...160
Figure 104. State Diagram..161
Figure 105. State Diagram Join Java Code..162
Figure 106. State Chart ...163
Figure 107. State Transition Join Java Code...164
Figure 108. Simple Petri Net ...165
Figure 109. Non-Bounded Petri Net before Transition...166
Figure 110. Non-Bounded Petri Net after Transition ..167
Figure 111. Non-Bounded Petri Net Join Java Code ...167
Figure 112. Bounded Petri Net Example..168
Figure 113. Bounded Petri Net Join Java Code ...169
Figure 114. Partial Three Way Handshake..170
Figure 115. Petri Net Join Java Method ..171
Figure 116. TCP Handshake Class (part a) ...171
Figure 117. TCP Handshake Class (part b) ..172
Figure 118. Join Java vs. Java Benchmark Speed (Java = 100%) ...177
Figure 119. Patterns for Synchronization Java vs. Join Java..185
Figure 120. Patterns for Concurrency Java vs. Join Java...186
Figure 121. Simple Concurrency Java vs. Join Java..187

 viii

LIST OF TABLES

Table 1. Summary of Concurrency Integration of Languages ..38
Table 2. Summary of Mainstream vs. Non-Mainstream Languages ..39
Table 3. Summary of Actor vs. Non Actor Based Languages ..40
Table 4. Summary of Communication Mechanisms for Concurrent Languages41
Table 5. Pattern Matcher API Summary ...101
Table 6. Join Interface API Summary..101
Table 7. Return Structure API Summary ..102
Table 8. Join Java vs. Java Benchmarking Results...177
Table 9. Join Java Cafe Style Results ..178
Table 10. Java Cafe Style Results ..178
Table 11. Compilation Speed Join Java vs. Java...179
Table 12. Patterns for Synchronization Lines of Code ..185
Table 13. Patterns for Concurrency Lines of Code ..186
Table 14. Simple Concurrency Mechanisms Lines of Code..187

 ix

ACKNOWLEDGEMENTS

There are a number of people and organizations that have contributed to both the research and

to the author’s capability to complete this thesis.

A number of organizations contributed to my research. Firstly, Sun Microsystems for the initial

equipment I used for my development of the compiler prototype. The Ecole Polytechnique

Federale De Lausanne (EPFL) that partly funded my visits to Switzerland. The Sir Ross & Sir

Keith Smith Trust for additional travel assistance. The School of Computer and Information

Science at the University of South Australia for time and material support especially during the

final part of my PhD. I would also like to thank the Australian Government and the Australian

people for funding me whilst undertaking both my undergraduate and postgraduate education.

To my family, Dallas Hohl and my brother in law Mark Hohl thanks for being there for me. To

Dad thanks for all those days I should have been out building fences. I would also like to thank

Uncle Mark for being a role model whilst I was studying.

To Ben Avery and Ron Graml thank you for being such great friends. To my friends and

colleagues at the university Grant Wigley for our political discussions, Dr Wayne Piekarski for

being pushy, Phillipa Osborne for the chats, Justin Taylor for the moral support, Greg Warner,

Malcolm Bowes to technical support. Frank Fursenko for those coffees in the bar. Jim Warren

for his supervision of my honours thesis. To my old flat mates Wayne Jewell and James

Abraham thanks for putting up with me.

I would also like to thank my old boss, Professor Brenton Dansie and my new boss, Professor

Andy Koronios. I would also like to thank the general staff within the department without you

the school would not function. Thank you for all the assistance with my teaching and research.

Jo Zucco and Kirsten Wahlstrom thank you for giving me the time to finish my write up.

I would also like to thank Dr Christoph Zenger and Professor Konstantin Laufer who marked

my thesis. Thank you for the extensive feedback that contributed to the quality of the final

product. Also to Sue Tyerman, for the last minute editing. I would also like to thank Professor

Martin Odersky for the initial direction for this thesis, Dr Matthias Zenger for his significant

technological assistance. Finally, the author wishes to especially thank Dr David Kearney for

his supervision.

 x

But like all systems, it has a weakness. The system is based on the rules of a
building. One system built on another. If one fails, so must the other.
(Wachowski 2003)

 xi

ABSTRACT

Concurrency expression in most popular programming languages is still quite low level and
based on constructs such as semaphores and monitors, that have not changed in twenty years.
Libraries that are emerging (such as the upcoming Java concurrency library JSR-166) show that
programmers demand that higher-level concurrency semantics be available in mainstream
languages. Communicating Sequential Processes (CSP), Calculus of Communicating Systems
(CCS) and Pi have higher-level synchronization behaviours defined implicitly through the
composition of events at the interfaces of concurrent processes. Join calculus, on the other hand
has explicit synchronization based on a localized conjunction of events defined as reduction
rules. The Join semantics appear to be more appropriate to mainstream programmers; who
want explicit expressions of synchronization that do not breach the object-oriented idea of
modularization. Join readily expresses the dynamic creation and destruction of processes and
channels which is sympathetic to dynamic languages like Java.

The research described here investigates if the object-oriented programming language Java can
be modified so that all expressions of concurrency and synchronization can use higher-level
syntax and semantics inspired by the Join calculus. Of particular interest is to determine if a
true integration can be made of Join into Java. This work seeks to develop a true language
extension not just a class library. This research also investigates the impact of the Join
constructs on the programming of well-known concurrency software patterns including the size
and complexity of the programs. Finally, the impact on the performance of programs written in
the language extension is also studied.

The major contribution of the thesis is the design of a new superset of Java called Join Java and
the construction and evaluation of the first prototype compiler for the language. The Join Java
language can express virtually all published concurrency patterns without explicit recourse to
low-level monitor calls. In general, Join Java programs are more concise than their Java
equivalents. The overhead introduced in Join Java by the higher-level expressions derived from
the Join calculus is manageable. The synchronization expressions associated with monitors
(wait and notify) which are normally located in the body of methods can be replaced by Join
Java expressions (the Join methods) which form part of the method signature. This provides
future opportunities to enhance further the inheritance possibilities of Join Java possibly
minimizing the impact of inheritance anomalies.

 xii

DECLARATION

I declare that this thesis does not incorporate without acknowledgment any material previously

submitted for a degree or diploma in any university. I also declare that to the best of my

knowledge it does not contain any materials previously published unless noted below, or written

by another person except where due reference is made in the text

Some of the material in this thesis has been published in the following papers.

A brief introduction of the ideas covered in this thesis appeared in

Itzstein, G. S. and Kearney, D (2001). Join Java: An Alternative Concurrency

Semantic for Java, University of South Australia Report ACRC-01-001.

Parts of the concurrency applications chapter appeared in;

Itzstein, G. S. and Kearney, D (2002). Applications of Join Java. Proceedings of

the Seventh Asia Pacific Computer Systems Architecture Conference

ACSAC'2002. Melbourne, Australia, Australian Computer Society: 1-20.

Some of the implementation chapter appeared in;

Itzstein, G., Stewart and Jasiunas, M (2003). On Implementing High Level

Concurrency in Java. Advances in Computer Systems Architecture 2003, Aizu

Japan, Springer Verlag.

Parts of the design patterns chapter appeared in;

Itzstein, G. and Kearney, D. The Expression of Common Concurrency Patterns

in Join Java - 2004 International Conference on Parallel and Distributed

Processing Techniques and Applications. Nevada, United States of America.

G Stewart Itzstein

1

1

Introduction

Small opportunities are often the beginning of great enterprises.

(Demosthenes).

Table of Contents

1.1 INTRODUCTION 2
1.2 MOTIVATION 3
1.3 STRUCTURE OF THESIS 7
1.4 RESEARCH CONTRIBUTION 8

Introduction

 2

1.1 Introduction

This chapter introduces the content of the research reported in this thesis. The chapter is

divided into three sections. The first section gives a motivation for the work. An overview of

the research is given and indicates possible deficiencies in the expression of concurrency. The

second section describes the structure of the thesis. Finally, the last section describes the

research contributions of the thesis.

Introduction

 3

1.2 Motivation

Given the long history of object-oriented and concurrent programming (Dahl and Dijkstra 1972;

Hoare 1985; Milner 1989) it might be expected that all the important issues have been

thoroughly investigated. In fact, the concurrency implementations in modern mainstream

languages are still quite primitive. At the same time, concurrency has become increasingly

more critical to modern software and operating systems. This is reflected at all levels of

computer systems architecture from hardware multi-threading (Intel 2004) to multi-threaded

programming languages where concurrency is more closely integrated into the language syntax.

With this increased provision of concurrency, it would be expected that modern languages such

as C++ and Java would have incorporated a high-level set of language elements to better

express concurrency. However, this is not the case. For example, C++ uses operating system

level threads and a semaphore library that is not integrated into the language. In Java even

though concurrency appears to be more closely integrated, its expression of synchronization is

still quite low-level, being loosely based on monitors (Hoare 1974; Buhr, Fortier et al. 1995).

Hansen states that the monitor implementation of Java (its claimed “high-level” expression of

concurrency) is not even a true reflection of his original vision of monitors (Hansen 1999). He

argued that Java synchronization should be used by default rather than left up to the

programmer. Another author, Holub also made the following observation regarding Java.

“The Java programming language's threading model is possibly the weakest
part of the language. It's entirely inadequate for programs of realistic
complexity and isn't in the least bit Object Oriented.”(Holub 2000).

Process calculi on the other hand are designed to model concurrency rather than implement it

(Milner 1989). These process calculi have a strong research heritage on the expression and

formal meaning of concurrency. The deficiencies identified by Holub and Hansen within

mainstream object-oriented languages might be overcome by using ideas from process calculi

research.

Concurrency has been implemented in many languages. The first purpose built concurrent

programming language was Simula (Dahl and Nygaard 1966). Simula also became the first

language that introduced some of the ideas of object-oriented programming. Simula used a

crude concurrency mechanism of co-routines that helped simulate concurrency. Later

languages such as Ada (Mapping and Team 1994) improved upon this simple mechanism.

Introduction

 4

Strangely, however, C++ supplied less support for concurrency instead leaving implementations

to the outside environment1.

The authors of Simula incorporated a primitive expression of concurrency via co-routines

because they recognized that the world that was to be simulated was itself concurrent. Since

then there has been continuing interest in supporting parallelism in a number of different

programming paradigms including that of object-oriented. Yet “modern languages” like Java

support concurrency and synchronization using technology that is nearly 30 years old. These

low-level primitives such as semaphores (Dijkstra 1968) and monitors (Hoare 1974) even

though very flexible, are not easy to scale up to large applications nor are they sympathetic to

the object-oriented paradigm. This has been recognized in the research community with a

number of higher level concurrency implementations being proposed such as JCSP (Welch

1999), JavaTrevini (Colby, Jagadeesan et al. 1998) and JSR-166 (Lea 2002). Yet libraries do

not entirely solve the problem as they don’t closely integrate with the existing language

semantics encouraging poor programming practice that the semantics was supposed to prevent.

Whilst imperative non object-oriented languages concurrency requirements could be satisfied

using the low-level concurrency structures, object-oriented languages extensively use the

structure of the program to represent information about the modelled domain. Programmers

that use object-oriented languages make use of objects within their programs to model the

problem they are solving. Consequently, if the language does not support concurrency within

the object-oriented framework it will present a serious impediment to the design of quality

programs. This is more critical now as object-oriented programming have become one of the

most popular programming paradigms for system development (Andrews 1998). Languages

such as C++ (Stroustrup 1983) and later Java (Gosling and McGilton 1996) have the attention

of a large proportion of mainstream programmers at the current time (JobNet 2004). For

instance in 1998 just two years after Java was first proposed the language was being used in

40% of IT companies (Andrews 1998). Java has also been used as a teaching language in 44%

of universities (Hardgrave and Douglas 1998). Java has found wide scale acceptance in a

number of real world application domains. For example Java’s ability to act as an embedded

language for small devices has been leveraged by Nokia for an API for mobile phones (Nokia

2003).

1 For example PThreads (IEEE 1992) would be regarded the most popular thread package for thread programming in C and C++.

Introduction

 5

To see how easy it is to get into trouble using the low-level concurrency constructs in an object-

oriented language like Java, a simple example is now presented relating to the use of a

synchronized block. For example, consider the code in Figure 1 below.

The monitor lock reference in Java can be changed half way through a synchronized section of

code. This problem is fundamentally caused by the fact that all non-base types in Java are

represented by references rather than the object identity itself. Usage of the lock is via a

variable reference that can be arbitrarily changed. This means that the user may change what

the reference type is pointing to and thus replace the monitor at will. Code in Java can

potentially look safe however, when executing is completely unprotected from multiple threads

accessing it. Any successful language extension should solve this problem by hiding the lock

from the user. In this way, the user cannot accidentally replace the lock at runtime. This

problem is only one of the more direct examples. In other situations, problems can be

extremely hard to locate and cause infrequently problems at runtime.

Object-oriented languages like Java (described in more detail from page 22) contain methods

that change or report the state of an object or class of objects. These methods act as the

message passing mechanisms between the objects in the program space. This design lends itself

to encapsulation of data and restricts data access between objects. According to the object-

oriented paradigm no data should be shared between objects other than those provided by the

message passing methods. In Java’s concurrency capabilities however, there exists no explicit

message passing mechanism for thread communications. Threads communicate via shared

Figure 1. Erroneous Use of the Synchronized Keyword

public class Breaksync {
 Object lockingObject = new Object();

 public void broken() {
 synchronized(lockingObject) {

 //various code

 lockingObject = new Object();
 //from this point code is no longer protected
 //code here that modifies supposed
 //protected data could corrupt the data structure
 }
 }
}

Introduction

 6

variables with the synchronized keywords providing protection of the data.

In this thesis, message passing in Java between threads via a novel method of compound

method signatures is introduced. That is when all methods from a compound method signature

are called the associated body of the compound method is started and the parameters can be

passed between fragments. The mechanism is introduced at the language level rather than a

library. Intra-process communication is achieved via multiple method signatures sharing a

method body. The actual communication is achieved using parameters and return types. If

multiple compound methods share fragments, dynamic message passing channels are created.

By implementing the synchronization in this way a thread message passing mechanism with

very low cognitive overhead to the programmer is achieved in almost exactly the same way as

message passing between objects. This innovation also demonstrates how a formal method can

co-exist with the object-oriented paradigm.

Introduction

 7

1.3 Structure of Thesis

The rest of the thesis is organized as follows. In Chapter 2, the literature is reviewed. In

Chapter 3, existing semantics of Java are reviewed and then the syntax and semantics of Join

Java is introduced. Problems in the current semantics of Java are also covered. In Chapter 4,

the implementation of the syntax and semantics of Join Java is described. The focus of this

chapter is the technical challenges that have been overcome in the implementation. In

particular, Chapter 4 describes the pattern matcher that is at the heart of the runtime component

of Join Java. Chapter 5 examines how design patterns in concurrency and synchronization can

be expressed in Join Java. Chapter 6 applies Join Java to classical concurrency applications. It

is shown how Join Java can express most of these problems in a simple compact form. Chapter

7 benchmarks the performance of Join Java and shows that further optimizations are possible to

overcome the remaining bottlenecks in the performance. The impact of boxing and unboxing in

Java is examined for its effect on the performance of the language extension. Chapter 8

provides conclusions and suggests further research.

Introduction

 8

1.4 Research Contribution

The Join Java language introduces several features that do not have clear analogues in the

original Join calculus formulation and other Join calculus-based systems. Imperative object-

oriented versions of the Join calculus such as Join Java have much in common with the “joint

action” approach taken in Disco (Kurki-Suonio and Jarvinen 1989; Jarvinen and Kurki-Suonio

1991). This language is fully message-based while most other implementations tend to be

predominantly state-based. This thesis makes three main contributions to the state of the art in

concurrent object-oriented languages. These contributions are;

1. Provision of high-level synchronization constructs into a mainstream language. These

high-level constructs allow programmers to better model parallel behaviour in their

programs without low-level synchronization mechanisms.

2. Provision of a safer intra-thread message passing mechanism via a guard-style method

signature implementation. This high-level mechanism allows the dynamic creation of

channels at runtime.

3. Improvement of thread integration in Java through a new return type that effectively

adds asynchronous methods to Java. A side benefit of this is to allow parameters to be

passed to threads at the time of their creation.

This dissertation explores how an expression of concurrency borrowed from process algebra

can be incorporated into a mainstream object-oriented programming language. The extension

has the aim of increasing the level of abstraction in which concurrent programs can be written.

9

2

Literature Review

Men who love wisdom should acquaint themselves with a great many
particulars.

(Heraclitus)

Table of Contents

2.1 INTRODUCTION 10
2.2 ABSTRACTIONS OF CONCURRENCY 11
2.3 PROCESS CALCULI AND THE JOIN CALCULUS 17
2.4 THE OBJECT ORIENTED PARADIGM 22
2.5 CONCURRENT OBJECT ORIENTED LANGUAGES 27
2.6 RELATED WORK 43
2.7 CONCLUSION 46

Literature Review

 10

2.1 Introduction

In this chapter, the literature relevant to the expression of concurrency is reviewed. It is

intended to mention all the key researchers, define the key concepts, and identify open questions

in the literature that the work of this thesis aims to fill.

The survey is organized into five sections. In section one, concurrency as a general concept is

covered. How the expression of concurrency has progressively become more abstract is

reviewed. Some of the more popular abstractions associated with concurrency are presented.

Process calculi are examined in section two for inspiration in deriving newer higher-level

concurrency constructs for mainstream programming languages. This section also gives a

detailed introduction to the Join calculus. In section three, an overview of the object-oriented

paradigm with its motivations and history is presented. In section four, the options for

implementing concurrency in object-oriented languages are examined. A number of

categorizing attributes of concurrent object-oriented languages are also identified. Finally, a

number of examples of real object-oriented languages that claim to support concurrency are

then categorized using the identified attributes.

Literature Review

 11

2.2 Abstractions of Concurrency

In this section, the fundamentals of the representation of the concepts of concurrency are

examined. In the first part of this section, abstraction is defined. A definition from (Kafura

1998) is adopted and applied to the domain of concurrency. In the second part, the basic

principles that form the foundation for any concurrent system are examined. The third part

builds on these foundations by looking at higher-level concurrency abstractions such as

monitors, semaphores and shared variables. It presents a common hierarchy that has emerged

from the literature that illustrates the levels of abstraction. It also notes how results from design

patterns literature present an even higher level of concurrency abstraction.

2.2.1 Abstraction

This thesis has adopted Kafura’s definition of abstraction

Abstraction is a design technique that focuses on the essential aspects of an
entity and ignores or conceals less important or non-essential aspects.
(Kafura 1998)

The key concept in abstraction is information hiding. Information hiding implies a layer at

which some specific information is not visible and a layer below which that information is

visible. This implies a strong relationship between abstraction and layering.

Kafura also sets out four general properties that make a good abstraction. Kafura firstly says

that abstraction is concerned with attributes and behaviour. The attributes are the characteristics

of the abstracted entity. Behaviours are the operations that the abstracted entity normally

performs. The four properties that operate on the abstraction are;

1. The first property of good abstraction is that the abstraction is well named. That is if the

abstraction has a good name the users of the abstraction will have an implicit

understanding of it. An example of this is a variable, where the name, for example

counter, implies the function as an abstraction.

2. The second property is that an abstraction be coherent. An abstraction is coherent when

the attributes and behaviours that comprise the abstraction are related and expected

given the domain in which they operate. For example, the attributes of a counter are to

store an integer and the behaviours of a counter are to increment and decrement the

integer.

Literature Review

 12

3. The third property of an abstraction is that it be minimal. The abstraction should

provide the least behaviours and attributes needed. For example, the behaviour

increment by two is not minimal for a counter. A counter which has a colour attribute is

an example of an abstraction that has more attributes than it needs.

4. The fourth property is that it is complete. This means that the abstraction should have

enough behaviours and attributes to model the entity that is being abstracted. The

counter behaviours presented previously are not complete because you need to be able

to reinitialize to some reference value typically zero.

Kafura’s general properties could also be used to evaluate the various abstractions of

concurrency. To supply a good abstraction of concurrency there is a need that the concurrency

mechanism to be well named. For example, mutex could be considered a poorly named

abstraction although the full expansion mutual exclusion would be more appropriate and

considered a better abstraction by the first property. Co-routines are well named as the name

implies a similarity to subroutines but parallel in nature. Coherence implies that the attributes

and behaviours of say, semaphores (Dijkstra 1968) which have two behaviours up and down

are related and expected based upon the name. The third property that it is minimal can be seen

in monitors where the abstraction only describes an entity that has behaviours wait and notify.

The final property completeness implies that the monitors are complete enough to represent

synchronization.

2.2.2 The Hierarchy of Abstractions of Concurrency

It has been noted that concurrency relies on three primitive abstractions (Schneider and

Andrews 1986) atomicity, basic communication, and synchronization. These primitive

abstractions are the lowest level abstraction of concurrency. For a concurrent system to be

usable, it must implement these primitive abstractions in some form. Consequently, these

abstractions are considered to be the foundation abstractions for concurrency.

All concurrent systems are composed of multiple actions that are active at the same time

communicating and synchronizing with each other. The most fundamental abstraction of

concurrency that is of interest to computer scientists is the atomic action (Lomet 1977). Every

concurrent system needs some form of atomicity. This is the point in which an action is

indivisible. Historically semaphores (Dijkstra 1968) were proposed before atomic actions;

however it is well established that semaphores are built on the idea of atomic actions. These

Literature Review

 13

abstractions of concurrency fit neatly into the Kafura properties presented earlier. That is they

are well named coherent, minimal and complete. The abstraction of atomicity is well named as

it implies indivisible action. The abstraction is coherent as its behaviour is what would be

expected. The abstraction is certainly minimal and it is complete.

For concurrency to be useful there needs to be some form of communication between various

parallel actions in the system. If communications were not supported in a concurrent system the

only result from concurrent processes would be side effects such as printing information to the

screen. The most basic form of communications is a variable in a shared address space

(Schneider and Andrews 1983). Communication using such a shared variable can only occur

correctly if the read and write operations on the variable are shown to be atomic. The

abstraction is well named. It shows coherence with its behaviours being related to reading and

writing from a shared variable. The abstraction is minimal in that it only is concerned with

reading and writing to and from a shared variable and again is minimal as the behaviours and

attributes could not be reduced any further. The abstraction is complete as all the behaviours

necessary for the abstraction are present.

Synchronization is about the ordering of atomic events. Synchronization can thus also be

defined as a mechanism for controlling access to a shared resource (Bloom 1979). For basic

communication to be reliable, the abstract concept of atomicity is also necessary.

Synchronization is how mutual exclusion of access is guaranteed to a shared variable in the

previous example. Mutual exclusion means that only one parallel process can access a shared

variable at one time, thus eliminating the problem of processes reading data structures that are

currently being altered. Synchronization requires atomicity to work and assists communications

to work reliably. Again, this abstraction obeys Kafura’s basic properties of being well named,

and coherent in that the behaviours of synchronization say that given a specific order of calls

the result will always be correct. It is also minimal as the abstraction restricts itself to

representing ordering of operations (the behaviour). The abstraction is complete as it deals

completely with ordering of atomic actions.

Literature Review

 14

This layer of abstraction is illustrated in Figure 2 where it is represented as the foundation for a

hierarchy of abstraction. This hierarchy will be built on; showing how each level of abstraction

requires the lower levels of abstraction to function. Each higher-level abstraction gives the

users easier to understand and utilize mechanisms for achieving concurrency and

synchronization whilst hiding the lower-level details.

A number of concurrency abstractions have become popular in programming languages. These

abstractions are somewhat higher in abstraction than that of atomicity, synchronization, and

basic communications. However, if examined closely it could be seen that they make use of the

lower-level abstractions to function. For example, semaphores make use of atomic calls to

undertake check and set operations. Without atomicity of calls, semaphores would not work

correctly. Similarly, monitors express a higher-level abstraction of concurrency. Monitors

make use of synchronization atomicity and communications to function. Consequently,

monitors and semaphores are considered a higher level of abstraction than that of atomicity,

synchronization, and basic communications. One could look at monitors as an abstraction that

hides the locks and queues associated with entry and exit to protected sections of code. The

locks act as synchronization mechanisms and queues control the ordering of threads accessing

protected segments of code.

It is clear that semaphores and monitors can be expressed in terms of each other’s

implementations; consequently, they are expressed side-by-side in the hierarchy. These

mechanisms can be considered primitive abstractions in the abstraction hierarchy. Figure 3

shows yet another layer being added called intermediate-level abstractions. This level adds yet

more abstractions such as buffered channels. These layers in turn reflect this increase in

expressability via hiding of lower-level abstractions.

Figure 2. Foundation of Concurrency Abstraction

Literature Review

 15

From the applications development point of view concurrency problems can also be partitioned

into design patterns. That is most concurrency problems can be implemented using one or more

generic design patterns proposed by a number of authors (Lea 1998; Schmidt 2000).

Programmers make use of these “design patterns” to solve their specific application

requirement. However, these patterns tend to be expressed in a high-level way that leads to

difficulties if the language they are using only provides low-level abstractions. This is the case

with most mainstream concurrent languages. Consequently, one of the most difficult aspects of

programming using patterns is the translation from the general implementation supplied by the

pattern designer to the specifics of the language and the problem. This difficulty could be

reduced if there was a higher-level abstraction that better matched the generalized way design

patterns are expressed. This missing layer between intermediate-level abstractions and design

patterns can be seen in Figure 4. In this thesis, it is suggested that an extension to the Java

language based on the Join calculus is one possible higher-level layer that more closely matches

a number of design patterns.

Figure 3. Extended Concurrency Abstraction Hierarchy

Literature Review

 16

Figure 4. Complete Concurrency Abstraction Hierarchy

Literature Review

 17

2.3 Process Calculi and the Join Calculus

In this section, we firstly introduce some popular process algebras giving some background on

their design motivations. The Join Calculus (Fournet, Gonthier et al. 1996) is introduced in

more detail and has its major terminology introduced. Finally, Join is contrasted with popular

process calculi showing that it has features that are more suitable for implementation into the

object-oriented paradigm.

2.3.1 Introduction

The term “process calculi” defines a group of formal description languages that are designed to

describe concurrent communicating systems (Fidge 1994). These description languages (also

known as process algebra’s) have been defined as

An algebraic approach to the study of concurrent processes. Its tools are
algebraically languages for the specification of processes and the formulation
of statements about them, together with calculi for the verification of these
statements(Glabbeek 1986).

In this thesis three process calculi are mentioned; They are calculus of communicating systems

CCS (Milner 1980), communicating sequential processes CSP (Brookes, Hoare et al. 1984;

Hoare 1985) and finally the algebra of communicating processes (Bergstra and Klop. 1985)

ACP. The CSP process algebra was initially inspired by Dijkstra’s guarded command language

(Dijkstra and Scholten 1990). CCS is designed in a similar handshake communication style to

that of CSP. Whilst CSP is directed more at a theoretical basis and tends to be a more

specification based language, CCS is more operationally oriented (Baeten and Verhoef 1995).

ACP, a more recent work, differs from CSP and CCS in that it is more algebraic in its approach

to modelling concurrency. These process algebras’ embody the intermediate to higher-level

abstractions based on our definition from the previous section. They are frameworks for

modelling the behaviour of interacting processes rather than programming them. For a full

comparative introduction of the differences between CSP and CSS consult Fidge (1994).

Virtually all process algebras have the aim of modelling interaction of concurrent systems with

syntax and semantic architectures varying between them. This research is more interested in the

models of concurrency that are below the level of the process calculi. That is the syntax and

semantics of concurrency and synchronization that are being implemented rather than

modelling of behaviour. Consequently, an in-depth discussion of process algebras is beyond the

scope of this work. However, the point that should be made is that CCS, CSP and ACP have

Literature Review

 18

implied synchronization rather than explicit synchronization. This contrasts with the Join

calculus presented in the next section.

2.3.2 Join Calculus

In this section, a detailed outline of the Join calculus is given. This section starts by giving a

brief overview of the calculus and some of the terms that will be used for the remainder of the

discussion.

The Join calculus can be thought of as both a name passing polyadic calculus2 and a core

language for concurrent and distributed programming (Maranget, Fessant et al. 1998). The

calculi’s operational semantics can be specified as a reflexive chemical abstract machine

(CHAM) (Berry and Boudol 1992) (Maranget, Fessant et al. 1998). Using this semantic the

state of the system is represented as a "chemical soup" that consists of active definitions and

running processes (Maranget, Fessant et al. 1998). Potential reactions are defined by a set of

reduction rules when a reaction occurs reactants are removed from the soup and replaced with

the resultant definitions. The syntax and semantics of the Join calculus is defined in the next

section.

2.3.3 Join Syntax

The Join calculus (Fournet and Gonthier 1996) contains both processes and expressions called

Join patterns. Processes are asynchronous constructs that produce no result. Expressions are

synchronous and produce a result. Processes communicate by sending messages through

communication channels. These communication channels can be described using Join patterns.

A Join pattern definition has two or more left hand terms and a right hand side. The expression

will not reduce until there are calls to all left hand terms. A body itself may contain another

expression that may include a parallel composition of two or more other expressions.

The syntax of the Funnel (Odersky 2000) language is used in preference to the syntax originally

defined by (Fournet and Gonthier 1996). This syntax is closer to that of the target domain

object-oriented languages, in our case Java, as its syntactic components are consistent with

other parts of the Java language specification. The Funnel variant (Odersky 2000) syntax of the

2 Polyadic Calculi have processes and channels which have identifiers

Figure 5. Funnel Variant of Join Calculus Syntax

Expression E => def D; E | x (y1….yN) | E & E
Definition D => L = E | D, D
Left Hand Side L => X(Y1…YN) | L & L

Literature Review

 19

Join calculus is presented in Figure 5.

For example given the Join calculus expression presented in Figure 6 it can be seen that there

are two expressions on the left hand side of X(Y1) and X(Y2) and a right hand side with a

parallel composition of xa(y1) and xb(y1). This means that when expressions X1(Y1) and

X2(Y2) are available the body of the definition is evaluated, in this case the parallel

composition of xa(y1) and xb(y1) expressions.

2.3.4 Join Semantics

In the previous section, it has been shown how the body of the definition is only evaluated when

all expressions in the left hand side are available. This behaviour can be modelled using the

CHAM (chemical abstract machine) semantics proposed by (Berry and Boudol 1992). The

chemical abstract machine semantics are modelled on the idea of a soup of waiting chemicals

that can react to generate new chemicals while removing old chemicals from the soup. As an

example of the semantics of the chemical abstract machine a brief example is presented. Given

a machine with one possible reduction def A&B = C&D it is assumed that the soup already

contains the left hand side expressions A & R & F & S & C. Consequently, the state of the

CHAM is as shown in Figure 7. Further if the expression B is added to the soup, the soup will

contain all the terms on the left hand side of the reduction rule. The terms will then react and

generate all the terms on the right hand side of the reduction rule removing the terms on the left

hand side of the reduction rule from the soup. This is shown in Figure 8 where the addition of

term B creates new terms (via the reduction rule) D and C in the soup and the terms A and B are

removed.

Join’s dynamic nature emerges when there is the possibility for multiple reductions to occur

depending on the combination of Join expressions appearing. If one were to augment the

definition above with an additional definition def A&Z = X it can be seen that on a call to A

depending on whether Z or B were previously called the choice of which definition to evaluate

would occur. If Z is waiting (called previously) in the CHAM then the second definition would

evaluated, A and Z would be removed from the CHAM and replaced by X. Alternatively if B

Figure 6. Example Join Calculus Expression

def X1(Y1) & X2(Y1) =
 xa(y1) & xb(y1) ;

Literature Review

 20

was waiting in the CHAM then the first definition would be evaluated removing A and B from

the pool, replacing them with C and D. One alternative situation that can occur is; what

happens if Z and B are both waiting in the CHAM and A is then called. In this situation, a non-

deterministic reduction is possible in that either the first definition or second definition could

equally be reduced but not both. The calculus does not specify what would occur in this case.

2.3.5 Synchronous Names

Combining the Join semantics from the previous section with blocking semantics a mechanism

of flow control can be achieved. These blocking fragments of the definition are called

synchronous names. With this addition to the semantics of Join calculus, message passing can

Figure 7. Addition of B to CHAM

Figure 8. Operational Semantics of the Join Calculus

Literature Review

 21

be supported in a language level implementation. This idea is sympathetic to the object-

oriented paradigm.

2.3.6 Join Calculus vs. Other Calculi

The Join calculus gives an ideal alternative to the current popular concurrency semantics in

programming languages via its locality and reflection. Locality allows us to limit reductions to

only one site in the calculus rather than all sites. The CHAM semantics in the previous section

omits the locality as the reductions are entirely completed within a global pool. If this were to

be implemented in the object-oriented paradigm, a CHAM would need to be created in each

object in order to give locality. Reflection on the other hand allows us to define reductions

dynamically when the evaluation occurs. In this thesis, we will implement locality via

localization of CHAM’s to the object level. We will not implement reflection other than that

implicitly offered by that of reflection libraries of the base language.

Fessant also points out an advantage of the Join calculus over other calculi.

Processes communicate by sending messages on channels or port names.
Messages carried by channels are made of zero or more values and channels
are values themselves. By contrast, with other process calculi (such as the pi-
calculus and its derived programming language Pict), channels, and the
processes that listen on them are defined by a single language construct. This
feature allows considering (and implementing) channels as functions, when
channels are used as functions. (Fessant and Conchon 1998)

Odersky (Odersky, Zenger et al. 1999) argues that Join Calculus better expresses the idea that

most modern applications are reactive in their interfaces and concurrent in their implementation.

The pi-calculus (Milner, Parrow et al. 1992) and the fusion calculus (Parrow and Victor 1998)

whilst expressing interaction between entities well do not represent sequential expressions

sufficiently. It has been pointed out that complicated type systems are needed to address these

problems.

2.3.7 Summary

In this section, the Join calculus was identified as a promising candidate for the expression of

concurrency that would be suitable for incorporating into a mainstream object-oriented

language. It is shown that Join’s high-level abstraction is based on the conjunction of atomic

actions and expression of synchronization explicitly in a way that is not likely to breach the

modularity required by object-oriented paradigms. This strongly motivates the choice of Join as

the basis for a high-level concurrency extension.

Literature Review

 22

2.4 The Object Oriented Paradigm

In this section, what defines the object-oriented paradigm is examined. The review particularly

emphasizes aspects that interact with concurrency. Some of the basic concepts of the object-

oriented paradigm are described. It is shown how the object-orientated paradigm has

information hiding as one of its central concepts. The requirements for a programming

language to be object-oriented are looked at and what advantages this gives are examined. It is

shown how object-oriented languages provide a framework in which the only information an

object shares with another object is the information passed via a message passing mechanism

such as method calls. The idea of message passing in the language and how encapsulation

requires us to limit the access of member variables in classes is scrutinized. Finally, the family

tree of object-oriented languages is examined. For a comprehensive survey of object-oriented

languages consult (Sutherland 1999).

Object-oriented languages were first proposed by (Dahl and Nygaard 1966) as a way of

representing real world concepts. The primary object-oriented language structure is the class,

that is an augmented record that also contains the operations that work on the data contained

within that record. Instances of classes can be created which are known as objects. Each

object’s code operates on the data within the instance object. In this way, the code is associated

with specific data rather than as is the case with non object-oriented languages, where the code

is generic and data is passed to it.

Before object-oriented languages, most software analysis and design focused on process.

Process designs were either data centric3 or control centric4. This data centric or control centric

approach tended to become problematic and was limited to small to medium sized

programming projects. These limitations and non-scalability issues became known as the

software crisis (Dijkstra 1972; Booch 1987). At this point software engineering was more an

art with the differences between good projects and bad projects being mainly due to the skill of

the team. In an attempt to improve this situation a methodology of design that would avoid the

scalability issues of the process model techniques was pursued. Developers needed to bring

reuse and closer representation of the real world to software engineering. This closely matched

the idea of the object-oriented paradigm that was proposed by the Simula language (Dahl and

3 Data centric applications can be described as programs that are designed to serve data from large data storage systems for example

databases.

4 Control Centric applications can be described as command style programs designed to interact with other systems or the outside
world.

Literature Review

 23

Nygaard 1966). The object-oriented paradigm offered abstraction via “class hierarchies” that

allowed control of cohesion between components in the system. This was a necessary

requirement for the increased complexity of projects being developed.

An important concept of software engineering is the idea of high cohesion and low coupling

(Stevens, Myers et al. 1982). A highly cohesive module will require outside modules as little as

possible. A loosely coupled module will be as constrained as possible from communication

with other modules in the system. The two principles of high cohesion and low coupling work

together to decrease the complexity of software hence reducing potentially hard to localise

errors. In the object-oriented paradigm, encapsulation is the method in which these two

principles are achieved. Encapsulation hides attributes from other objects (modules) via

modifiers. Modifiers allow the programmer to set the visibility of methods and attributes. In

object-oriented languages, it is customary to restrict visibility of internal methods and attributes

so that they cannot be seen outside the object in question. In this way, these issues of high

coupling are avoided such as having various objects access any attribute or method they wish.

If arbitrary access to the objects state were allowed the application would be highly coupled and

hence unnecessarily complex. This reduction in accessibility leads to a requirement of a more

formal mechanism of object communication known as message passing. This starkly contrasts

with the majority of concurrency abstraction implementations that are highly coupled and have

low cohesion. Concurrency abstractions tend to be non-localized where concurrency calls can

be made from anywhere in the code to anywhere else in the code. An example of this is

semaphores where up and down calls can be made anywhere. Monitors address some of these

deficiencies by associating locks and queues to scopes. However, monitors have even been

shown to be a problem (Ramnath and Dathan 2003) where they increase the coupling of more

complicated patterns. Within an object-oriented program, no object should be able to directly

manipulate another object’s attributes and hence state. The way that one object seeks to change

the state of another’s object is via mutator methods. These method’s explicit purpose is to

allow another object to request a change of an object’s internal state. If an object needs the

contents of another object, it is done via an accessor method. In this way, the object can protect

itself against being placed in states that it should not be. This reduction in coupling reduces the

complexity of the interaction between different modules of the system hence increasing the

scalability of software development. Any concurrent mechanism implemented in an object-

oriented language should support this implicitly.

Literature Review

 24

2.4.1 Advantages of the Object Oriented Paradigms

The advantages of the object-oriented paradigm can thus be summarized as:

1. Data Abstraction: This concept allows complicated representations to be modelled in

the language whilst still maintaining readability. The object-oriented paradigm achieves

this via inheritance of classes. In this way, generic concepts are represented high in the

inheritance structure whilst concepts that are more specific are added progressively as

one descends through the inheritance tree.

2. Encapsulation: Bundles related data and methods into neat packages that then provide a

form of modularity5. Encapsulation also provides support of information hiding via

interfaces (definition of the methods within a class). In this way, the user of the class

does not need to know the implementation details of the class they are using. In fact, the

implementation can be arbitrarily changed at any time with the user of the class not even

knowing.

3. Polymorphism: Quite often, it is a good idea to group similar objects of different classes

so they can be treated in the same way. For example in a drawing program,

representative classes may have for each type of drawing a widget such as circles or

spheres. It would be useful if one could just refer to all these widgets as shapes and

write methods that use shapes. In this way, one can add new types of widgets without

having to write new methods for each. This helps support code reuse hence leading to

more scalable engineering of software systems.

4. Reusability: By using the encapsulation facilities of object-oriented languages, an

amount of reusability is acquired. The encapsulation of data structures with the

methods, attributes with well-defined interfaces allows us to hide the implementation

details from the user. This, together with high cohesion and low coupling, leads to code

that can be reused in different projects. Furthermore, making use of the facility of

polymorphism, code reuse is attained. That is, rather than writing a different method for

each type of class; instead, a carefully designed inheritance structure will provide a

generic class with generic methods. The methods are written to accommodate the

generic class signatures any subclassed object can then be passed as the generic type.

5 It is arguable that the Object Oriented paradigm is flawed in that the inheritance structure of most modern applications libraries is

defeating encapsulation and high cohesion.

Literature Review

 25

2.4.2 History of Object Oriented Languages

With so many object-oriented languages available, it is useful to see how the major languages

relate to each other. Object-oriented languages have developed a long way since the

introduction of the Simula language. A number of external sources have influenced the

development of languages culminating in recent languages such as Java (Gosling and McGilton

1996), C++ (Stroustrup 1983) and Sather (Lim and Stolcke 1991). Figure 9 shows a tree

illustrating the development of object-oriented languages. The tree shows the main languages

in relation to the non-object-oriented languages they draw inspiration from and how they relate

to each other. This tree is by no means complete6 but shows some of the highlights and how

they relate to each other. The Simula languages are the founding languages for object-oriented

concepts. Simula can also be regarded as the first language to introduce true concurrent

6 (Sutherland 1999) reports that at the time of his publication there were over 170 known Object Oriented languages

Key

Non OO
Language

OO
Language

Simula

C++

Smalltalk

Modula 3

Simula 67

Ada-95Objective C

Sather

Self

Eiffel

Java

C

Ada

Modula 2Algol 60 Pascal

Figure 9. A partial family tree of object-oriented languages

Literature Review

 26

behaviour7. One might regard Simula as the watershed that spawned most of the modern

languages that have gained wide spread acceptance today. It is interesting to reflect that most

object-oriented languages since the original Simula language have had some form of

concurrency. However, the most popular object-oriented language (C++) omitted concurrency

support and only supplied the most low-level of primitives for synchronization. Java on the

other hand supplies a concurrent class Thread that supports a single asynchronous method.

However, even this class is still an addition to the language and not truly integrated into the

language syntax.

2.4.3 Summary

It can be seen from the preceding sections object-oriented languages leverage the idea of

information hiding, encapsulation, inheritance, and message passing to achieve the aim of

building a paradigm that will support the continually increasing size of programming projects.

The language design is elegant in data structure composition with control structures being

subjugated to the data rather than data being supplied to the control structures. Communication

is also more elegant with the concept that communication should only be achieved through

accessor/mutator methods8. This section showed that languages based on the object-oriented

paradigm have as a central design aim to restrict inter-object communication as much as

possible. For consistency, communication should only be allowed via a tightly controlled

message-passing construct. This ideal can be intuitively extended to threading to say that one

should restrict inter-thread communication as much as possible. That inter-thread

communication should only allow threads to communicate through safe message passing

constructs rather than arbitrarily accessing shared variables. Unfortunately, concurrency is

generally not well implemented in object-oriented languages. Concurrency tends to be

minimally integrated with a lot of dependence on external libraries.

In the next section, the concepts of the fusion of object-oriented languages and concurrency will

be introduced. An overview of some object-oriented languages is presented along with how

concurrent object-oriented languages can be categorized.

7 Simula offered via co-routines a simple form of concurrency. Co-routines are similar to sub-routines except they save control state

between calls.

8 Generally these intra-object communications are called message passing.

Literature Review

 27

2.5 Concurrent Object Oriented Languages

In this section, existing approaches to the expression of concurrency in a selection of object-

orientated languages will be surveyed. The selection includes some research languages in

addition to the three mainstream languages C++, Java, and Ada95. This section starts by

suggesting a number of categorizing attributes in which concurrent object-oriented languages

can be differentiated. The categorization of actor-based languages vs. non-actor based

languages is examined first. Following this, a categorization of how closely concurrency is

integrated into the language is shown. The final categorization is that of mainstream vs non-

mainstream languages. A number of concurrent object-oriented languages that have already

been proposed are reviewed. The definition of what is a mainstream object-oriented

programming language and how these mainstream languages have handled the issues relating to

the expression of concurrency are reviewed. Finally, selected concurrent object-oriented

languages are reviewed with emphasis on the classification of concurrency. The outcome of

this survey is the realization that for most mainstream languages there has been little attempt to

encapsulate threads or integrate concurrency and as a result, many object-oriented specific

problems that researchers have identified are amplified.

Object-oriented designs do not necessarily make concurrent programming easier. A poorly

designed concurrent object-oriented program can easily obscure the behaviour of threads

running in parallel. Unlike processes in operating systems, which are protected by memory

management software (other than those explicitly given all privileges), Java for example uses a

type system to protect users from executing unsafe operations. However, the Java type system

does not protect the user from concurrent access to shared variables. For example,

programming a thread pool using only monitors can be a non-trivial task. The programmer

needs to pass references to a job dispatcher. This job dispatcher via some central registry of

workers finds which threads are idle and signals a thread that a job is waiting. The worker

thread then collects the job and runs it returning the outcome via some shared variable.

Implementations of this pattern can be quite difficult with shared data being vulnerable to

corruption due to double updates if the author is not careful to fully protect shared data.

There are a great number of concurrent object-oriented languages available today. Languages

such as Java (Steele, Gosling et al. 1995), ADA (Wellings, Johnson et al. 2000) and C++ with

PThreads (Stroustrup 1983) are popular languages. These languages have varying levels of

support for concurrency/interaction, ranging from difficult low-level external library support

such as C++ to low-level usable concurrency as is the case with ADA and Java. In the

Literature Review

 28

following sections, these languages will be covered categorizing them by their particular

approaches to concurrency implementation.

A major feature that defines the object-oriented paradigm is the idea of class inheritance. Class

inheritance is where a class takes the attributes/methods from another class in addition to the

ones it provides. This allows a generalized class to be written and then classes that are more

specific are written to express domains that are more specific. With respect to concurrency,

inheritance causes problems in expression. The inheritance anomaly is where redefinitions of

methods are required to maintain the integrity of concurrent objects (Matsuoka, Wakita et al.

1990). When method names and signatures are known, and method bodies are abstract, the

signature of a parent class does not usually convey any information regarding its

synchronization behaviour. This behaviour is usually defined within the body (Fournet, Laneve

et al. 2000). With this restriction in most object-oriented languages an inheritance anomaly can

exist if a subclass method cannot be added without modification in some form of the superclass

methods. This of course is the reverse of the design methodology in object-oriented languages

where subclasses modify the behaviour of the superclass by overriding the superclass methods.

If the superclass has to be rewritten for the subclass, the design paradigm breaks down. Much

of the research into concurrent object-oriented languages has been carried out in an attempt to

reduce the impact of the inheritance anomaly. (Crnogorac, Rao et al. 1998) shows that none of

these languages can actually fully solve the problem, as there appears to be a fundamental

incompatibility between concurrency and object-oriented paradigms. For this reason, most

research aims to minimize the problem rather than eliminate it. This thesis does not aim to

solve the inheritance anomaly, but tries to contribute to reducing the likelihood of occurrence.

The thesis highlights how low-level synchronization expressions that are poorly integrated into

an object-oriented language require them to be placed in the body of methods. This approach of

placing constraints within the body is an enabling mechanism for the creation of inheritance

anomalies (Pons 2002). Thus, it can be concluded that there is a definite argument to

investigate how high-level concurrency can be added to mainstream languages. With this

alternative approach, it may also be possible to reduce the number of inheritance anomalies via

moving constraint information to the inheritable part of the class rather than the method body.

In the following sections, we will introduce three categorizations of concurrent object-oriented

languages. These categorizations are actor categorization (Section 2.5.1), implementation

categorization (Section 2.5.2) and mainstream categorization (Section 2.5.3). A number of

languages are then classified using the categorizations in section 2.5.4. In section 2.5.5 we

Literature Review

 29

show that a gap exists in the field of concurrent object-oriented languages that Join Java intends

to fill.

2.5.1 Actor versus Non-Actor Based Concurrent Languages

The first categorization shows how parallelism and synchronization are integrated within the

language.

1. Actor based languages (Agha 1986). In these languages, every object is also a thread

and objects. A true active object language will make the thread active the moment the

object is created. The first actor based language was Plasma (Hewitt 1976) originally

named Planner 73 (a non-object-oriented language based on Lisp). Following Plasma

there have been a number of implementations of Active Object Languages. Plasma II

(Salles 1984) evolved later with support for parallel interpreters. Still later Alog added

extensions for logic(Salles 1984). Alog evolved into Smart (Salles 1989) which added

support for distributed interpreters. Figure 10 gives a brief description of the evolution

of active object languages from Plasma up to languages that are more recent.

2. Non-actor based languages. In these languages, threads are separate from the objects.

In this way, several threads may be active within a single object at the same time. This

mechanism allows objects that do not need to be active to have low overhead. In many

implementations, the language has specialized libraries that allow code to run in parallel.

An example of this category is Java (Gosling and McGilton 1996). In Java, if one

wishes to produce a thread, a call to the library is made or the asynchronous method of

the thread class is overridden. Initially when the first object-oriented language was

proposed, it supported concurrency via co-routines that were conceptually quite similar

to that of sub-routines from older style imperative languages. The idea of separating the

objects from the threads can be considered a passive object approach to concurrent

object-oriented languages. The disadvantage of this approach is that the programmer

has to explicitly create threads when they deem necessary. There is a separation of

threads and objects in the language to the programmer. This leads to cognitive

overheads as the programmer tries to define where threading is required and where it is

not required then designing a mechanism for communication between the threads.

Literature Review

 30

Actor based languages whilst not necessarily being object-oriented share a great number of

similarities with that of the object-oriented paradigm. The term active object language will be

used when referring to actor-based languages that are within the object-oriented paradigm. In

the following sections, the thesis concentrates on the active object variety of actor-based

languages. However, this section will cover the most important languages in the entire set of

actor-based languages for completeness.

2.5.2 Integrating Concurrency into Object Oriented Languages

In concurrent object-oriented languages, there are several ways of integrating concurrency into

the language. These approaches have a direct effect on the ease of use and safety of

Language that
Contributed To

Actor Based
Language

Key

Actor Based
Language

Act 2

Act 3

Plasma IIAct 1

Omega Smart

ABCL/R

ABCL/R2

ALOG ABCL/C+

ABCL/1
Lisp

Smalltalk

Hybrid

CA

Actalk

Studio

Plasma

C

Figure 10. Evolution of Actor Based Languages

Literature Review

 31

concurrency within the language.

1. Library approaches. Concurrency and synchronization features are embedded via a

predefined set of libraries. This approach is taken by JCSP (Welch 1999) and CSP for

Java (Hilderink, Broenink et al. 1997) both which retrofit CSP semantics to Java via

library calls. These types of extensions are normally quicker to develop however lack

the advantages of language level integration. For example, errors in the use of libraries

cannot be detected by the compiler leading to long debug cycles for application

development.

2. Superset. This is where an existing language is expanding with syntax and semantics to

support concurrency. For example, Timber (Black, Carlsson et al. 2001) adds

concurrency and imperative object-oriented semantics to Haskell (Jones, Hughes et al.

1998; Jones 2003). These implementations tend to gain wider acceptance as they

leverage existing user knowledge to allow for quicker understanding of concepts.

However, they are usually slower than the base languages as they add features that may

break the optimizations in the base language’s compiler.

3. Design a completely new language. Create a new language with semantics of

concurrency embedded into the language. An example of this language is Funnel

(Odersky 2000) where the language was specially designed to illustrate a small set of

features including concurrency. This is the ideal solution, as no compromises need to be

made in implementation. These implementations have the disadvantage that there are

no programmers who will initially understand the language. It is then harder to get the

language to be accepted as a mainstream language.

2.5.3 Defining Mainstream Languages

For the purposes of this thesis, mainstream languages are defined as any language that is used

by a reasonable proportion of non-academic users. That is, those languages that are used by a

significant proportion of industry programmers. For example, C++, Ada and Java would all be

regarded as being mainstreams language due to their widespread use.

Literature Review

 32

2.5.4 Implementing Concurrent Object Oriented Languages and

Extensions

Concurrency has been long recognized as being necessary in any modern programming

language. Right back at Simula-67 and Algol-68 threads and simplistic synchronization

primitives have been made available in languages. Later languages like OCCAM (Inmos 1984)

have implemented small improvements such as monitors (Hoare 1974) and CSP style constructs

(Hoare 1980). Java has made concurrent programming using threads widely available to

mainstream programmers. However, this situation has just re-emphasized what many-

experienced concurrent programmers already knew, that concurrent programming is inherently

difficult to get right. In the following paragraphs, some of the more well known approaches to

implementing concurrency in object-oriented languages will be covered.

MuC++ (Buhr 1992) a language which extended C++, was designed to give programmers

access to the underlying system data structures. It implemented low-level operations such as

real-time monitors, timeouts dynamic-priority scheduling and basic priority inheritance. It uses

a translator and runtime kernel that supports concurrency using a shared memory model. The

language modifies the C++ syntax but does not modify the compiler. A pre-processor converts

the program into a normal C++ language file. A significant disadvantage of this is when a

compilation error occurs; the compiler will give error messages in terms of the translated code

not the extension language.

Another language, ACT++(Kafura, Mukherji et al. 1993) is one of a large number of languages

based upon the idea of actors (Agha 1986). This language is implemented using a library rather

than a language extension. Again this language is based on the C++ language. However, as it

is a library extension it does not modify the syntax.

Synchronization rings (Holmes 1995) rather than being a specific language was proposed as a

language independent model of synchronization. More specifically synchronization rings are a

library of behaviours that support the composition of concurrent behaviours. This language

independent model has been implemented in two languages C++ and Java. The language

independence whilst being flexible suffers from not being closely integrated with the language.

The Tao (Mitchell 1995) model (and later implementing languages) primarily aimed to

overcome some of the problems involved with the inheritance anomaly. The prototype

language is implemented as a language extension with a pre-processor that generates C++ code

Literature Review

 33

after passing through a translator. The language achieves its aim via the novel approach to

inheritance anomaly avoidance. However, the prototype suffers from the same problem that

other translation languages have. That is errors are given in terms of the translated language

rather than the extension language.

A number of implementations of CSP (Reppy 1992) have been created for object-oriented

languages (Demaine 1997; Hilderink, Broenink et al. 1997,Welch 1999; Bakkers, Hilderink et

al. 1999). Most of these CSP style extensions are in the form of libraries that are added to the

language. Demaine’s (1997)’s work on Java communicating sequential processes is a good

example. In his extension, events are regarded as first class objects that are treated as normal

objects in Java. The extension (a Java package) uses a number of primitives for sending and

receiving these events. Demaine also thought it important to supply an alt or non-deterministic

choice primitive operator as well. The language extension is based upon the work done by

(Reppy 1992) which in turn was based upon work by Hoare (1985). Similarly (Hilderink,

Broenink et al. 1997)’s implementation uses a library to introduce CSP style semantics into

Java. Whilst these approaches are usable, it would be imagined that the CSP primitives should

really be implemented at the language level.

The first actor based language was proposed by (Hewitt 1976). The language (originally named

Planner 73) was based on Lisp syntax but supplied in addition to the existing multitude of

parenthesis even more parenthesis and brackets. This made the language somewhat hard to

interpret when reading code. From Figure 10 above it can be seen that from Plasma a large

number of languages were spawned in several branches including the Act series of languages.

Act 1 (Lieberman 1981), Act 2 (Theriault 1983) adopted features from the Omega language

(Attardi and Simi 1981), The Plasma designer returned with Act 3 (Hewitt 1985) which was an

domain specific variant of the Act series of languages. Plasma 2 introduced a parallel

interpreter (Salles 1984). Salles then further extended Plasma 2 with further support for logic in

ALOG (Salles 1984). This was then further extended into Smart which contained support for

distributed computing on virtual machines (Salles 1989).

A set of descendants of the Plasma language was the ABC series of languages ABCL/1

(Yonezawa 1990), ABCL/R (Watanabe and al 1988) ABC language paradigm with reflection

and finally ABC/R2 (Yonezawa 1992) which merged features from Hybrid into the Common

Lisp semantics. One problem with these languages is that they mostly used Lisp as the host

language. These languages proved to be unpopular outside academia. To remedy this a

Literature Review

 34

mainstream language variant of ABC was created called ABCL/c+ (Doi and al 1988)) which

used C as the host language. In a number of ways, this extension to C was synonymous to the

C++ extension to C.

A number of independent languages were created to explore facets of actor-based languages in

relation to object orientation. A short selection of these are presented with their more

memorable characteristics. Concurrent Aggregates (Chien 1990) was aimed at being a more

restrictive and pure implementation of the object-oriented paradigm with actors (an active

object language). It also added features such as continuations and first class behaviours to the

language. At about the same time some implementers favoured Smalltalk (Goldberg and

Robson 1983) created an extension called Actalk (Briot 1989). A number of other independent

active object languages were created that explored active object ideas such as Lucy (Kahn and

al 1990) and Studio (Hadjadji 1994). These languages, whilst being excellent academic

explorations of the facilities of actor based languages tended to be of little use in mainstream

programming as they were frequently hosted in either purpose built narrow domain languages

or more commonly in the Lisp language.

A small number of actor-based languages were created that merged with the mainstream

languages C or C++. These languages merged the ideas of the original Plasma language with

the syntax and semantics of the host language. For example, Hybrid (Nierstrasz 1987)

abandoned the Lisp syntax style in favour of C++ syntax style with static typing. Another C++

language Act++ (Kafura 1989) was designed to be a full concurrent extension of C++ based on

the active object paradigm. Synchronous C++ (Petitpierre 1998) was proposed more recently.

This extension contained a real time kernel that allowed each object to contain a thread of

control that could be interrupted at will by other active objects. The ideas of Synchronous C++

were ported to Java with Synchronous Java (Petitpierre 2000) two years later. Both languages

were implemented via concurrency libraries.

Triveni is a process-algebra based design methodology that combines threads and events in the

context of object-oriented programming (Colby, Jagadeesan et al. 1998). The Triveni system is

not really a language but a framework that can be added to any language via a library. One of

these extensions is the JavaTriveni (Colby, Jagadeesan et al. 1998) library. The framework

supplies two classes of combinators: standard combinators from process algebras such as

parallel composition, and pre-emptive combinators (Berry 1993). In Triveni, communication is

done via events that are in fact named communication channels. The framework also has a

Literature Review

 35

specification based testing facility that allows testing for safety properties. However, Triveni’s

major contribution is the pre-emptive combinators that allow another process to abort or

suspend processes at runtime and in combination with asynchronous communication that earlier

frameworks did not possess. While Triveni is an interesting approach however, it does have

some disadvantages. Firstly, the framework is entirely implemented as libraries and

consequently does not support the extension at the language level. This means that the users

have to call library functions to make use of expressions that are more naturally expressed as

language primitives. For example, the parallel operation that executes a number of jobs

concurrently is expressed as an array of new jobs passed to the constructor of the parallel object.

This is non-intuitive, as one would expect such a low-level operation to be expressed as a

syntactic operation rather than a library operation. Of course, this could be done with Triveni

however, that would lose some of the language independence the designers were seeking when

designing the framework. The second disadvantage is the differences between it and the

platform on which it sits (for example Java). To be ultimately usable the extension should fit as

closely as possible with the paradigm of the platform on which it is placed. Again, this was a

conscious design choice as the developers of Triveni were aiming for a platform independent

framework.

In ADA (Guerby 1996), tasks are integrated into the language via class style syntax.

Synchronization is via a rendezvous mechanism. Rendezvous is a mechanism where one thread

sends a message to another thread via two primitives, accept and entry. An ADA rendezvous

occurs when control reaches an accept statement in one task and another task executes the

corresponding entry call statement. One of the negative features of ADA rendezvous is that it is

prone to dead lock (Levine 1998). This is generally attributable to the lack of locality, which

makes it hard to identify dead lock prone code.

The JoCaml language was proposed by (Maranget, Fessant et al. 1998; Fournet, Laneve et al.

2000) it is an extension of the objective-Caml language with Join calculus semantics. The

authors claim that the language includes high-level communications and synchronization

channels, failure detection and automatic memory management. JoCaml was a second language

implementation of the Join calculus authors (Join language (Fournet and Maranget 1998))

JoCaml is implemented via a concurrency library added to the Caml Language. It also modifies

the bytecode set of the Caml language in order to make the extension work more easily. This

language extension is a more interesting extension but is implemented in an unfamiliar language

Literature Review

 36

to mainstream programmers. It would thus be necessary to translate the ideas to a production

system in order to gain more ready acceptance of the ideas.

Bertrand Meyer extended the Eiffel (Meyer 1988) language to support concurrency and

synchronization. His extension, concurrent Eiffel (Meyer 1997) was a straight forward

syntactic addition to the language. He achieved concurrency via adding a keyword separate

that indicates that the object has its own thread of execution. These threads of executions

communicate via method invocations in each thread’s own methods. If the method is not ready

to reply it will block the caller until the reply is ready. Despite the fact that the base language

Eiffel is popular in the academic area and some restricted commercial domains(such as

telecommunications), Concurrent Eiffel cannot be regarded as a mainstream language.

Concurrent ML (Reppy 1992) is an extension based upon SML/NJ (George, MacQueen et al.

2000). The language supports dynamic thread creation and typed messages passing channels.

Threads are implicitly first class in the language, which means that synchronisation abstractions

can be dynamically created. The language also provides a number of other features such as

stream I/O and low-level I/O being integrated into the language itself. This language however,

could not be considered mainstream.

C++ in reality provides no support for threading or synchronization. Threading is achieved via

operating system specific libraries that do not integrate closely with other language features.

Synchronization is achieved through either data structure sharing or pipes. The danger of this

approach is the libraries are not necessarily platform independent, which means that programs

have to be modified for every target platform. Secondly, other libraries and language

components that threaded programs may use may themselves not be thread safe. For instance a

member of the class may be declared as static which means only one instance exists for all

classes. In normal cases, this may be acceptable however; if the data is accessed and modified

in a multi-threaded context, it is possible to corrupt the contents of the field with unpredictable

results. This is a problem, as generally the application programmer has no access to the source

code. This means they have to either risk possible data corruption or rewrite their own versions

of the libraries. Generally, the solution to this problem is to create a wrapper class that protects

the class using some form of locking mechanism (such as the OS semaphores of UNIX based C

and C++ languages). This of course increases the complexity of the application being

programmed hence reducing maintainability.

Literature Review

 37

Java supports multithreading via the use of a special thread class that in essence implements an

asynchronous method. To make a threaded program the user subclasses the thread class and

then overrides’ the run method. Synchronization is achieved via a monitor embedded into every

object in the program. Programmers make use of these monitors to protect data structures

whilst other threads are modifying the same data. A deeper description of the semantics of Java

concurrency can be found in Chapter 3. It is easy to, firstly circumvent the monitor lock by

accident or, secondly to lose track of the locality of locks which leads to the possibility of

deadlock. It has also been noted that non-method level locking leads to greater chances of

inheritance anomalies (Pons 2002)

In this section, a selection of the most relevant object-oriented languages and extensions were

covered. It can be seen that actor based and more specifically active object languages are an

interesting solution to the issues involved in concurrency and object-oriented languages. It

could also be presumed that the active object paradigm would be more expensive

computationally than that of non-active objects presented due to the number of active threads

being implicitly larger. It can be seen how academic languages whilst having superior

concurrency mechanisms are not widely used. Counter to this is the mainstream group of

languages, which are more conservative in their approach to concurrency, yet are widely

accepted. Consequently, through these languages it can be seen that there is an apparent gap

between the promise of the academic languages and the reality of the mainstream languages.

2.5.5 Categorization of Concurrent Object Oriented Languages

In this section, we summarize the languages we have examined using the categorization that

were identified earlier. Table 1 shows the method in which concurrency is added to the

language. Table 2 shows whether the language is considered mainstream or non-mainstream.

Finally, Table 3 shows whether the language is an actor based language or non-actor language.

Literature Review

 38

Language
Library Based

Implementation Retrofitted
New

Language
ABCL/1

ABCL/C+

ABCL/R

ABCL/R 2

Act 1

Act 2

Act 3

ACT++

Ada

Alog

C++

Concurrent Eiffel

Concurrent ML

Hybrid

Java

JoCaml

MuC++

OCCAM

Plasma 2

Plasma/Planner 73

Simula

Smart

Studio

Tao(model)

SyncRings (model)

CSP (Models)

Triveni

Table 1. Summary of Concurrency Integration of Languages

In Table 1, it can be seen that the majority of languages are retrofitted languages. A significant

proportion are library based in that their concurrency is not explicitly implemented syntactically

in the language. A number of assumptions were made in this table regarding whether particular

language features are library based, new language or retrofitted. For example, Java whilst being

a new language with some concurrency features integrated into the language (synchronized

keyword) is in fact a library implementation. We only consider the language to be non-library

based if it can create and synchronize threads without resorting to system libraries.

Literature Review

 39

Language Mainstream Non-Mainstream

ABCL/1

ABCL/C+

ABCL/R

ABCL/R 2

Act 1

Act 2

Act 3

ACT++

Ada

Alog

C++

Concurrent Eiffel

Concurrent ML

Hybrid

Java

JoCaml

MuC++

OCCAM

Plasma 2

Plasma/Planner 73

Simula

Smart

Studio

Tao(model)

SyncRings (model)

CSP (Models)

Triveni

Table 2. Summary of Mainstream vs. Non-Mainstream Languages

In Table 2 it can be seen that the majority of languages are non-mainstream. This makes sense

as industry users are generally unwilling to move from the languages they are familiar with

unless necessary. If we were to examine the mainstream languages mentioned here, we can see

that they tend to be iterations of existing languages. For example, C evolved to C++ and Java

adopted a large proportion of the syntax from C++.

Literature Review

 40

Language Actor Based Non-Actor Based

ABCL/1

ABCL/C+

ABCL/R

ABCL/R 2

Act 1

Act 2

Act 3

ACT++

Ada

Alog

C++

CA

Concurrent Eiffel

Concurrent ML

Hybrid

Java

JoCaml

MuC++

OCCAM

Plasma 2

Plasma/Planner 73

Simula

Smart

Studio

Tao(model)

SyncRings (model)

CSP (Models)

Triveni

Table 3. Summary of Actor vs. Non Actor Based Languages

Finally, Table 3 gives a summary of actor vs. non-actor languages. In the next section, we

extend the categorizations presented so far to cover that of intra-process communication.

Literature Review

 41

2.5.6 Intra-Process Communications

Another important characteristic of concurrent systems is that of intra-process communications.

Whilst a number of different mechanisms exist, this thesis will categorize these intra-process

communications mechanisms into three types using (Andrews 2000) criteria.

1. Message passing; Communication is via channels formed between parallel threads.

Channels do not necessarily have to protect themselves, as they are generally purpose

built between particular threads. An example of this is or CSP (Hoare 1980) and

OCCAM (Inmos 1984).

2. Shared Resource; Threads communicate via data that is accessible by all. This “shared

data” can be read and altered concurrently. Shared data has to be protected from

corruption therefore; some form of multiple access protection is required. Protection is

usually via a locking mechanism such as monitors (Hoare 1974) or semaphores

(Dijkstra 1968).

3. Coordination; Communication is via a shared space (tuple space) that dissociates

interaction of the components from the components themselves. The most well known

example of coordination languages is that of Linda (Gelernter 1985; Carriero and

Gelernter 1989). Whilst this mechanism is similar to the shared resource category it is

possible to separate languages based on coordination as it is a higher-level mechanism

for accessing the shared resources.

Language Channel Shared Resource

C++

Concurrent Eiffel

Concurrent ML

Java

JoCaml

MuC++

OCCAM

SyncRings (model)

CSP (Models)

Triveni

Table 4. Summary of Communication Mechanisms for Concurrent Languages

Literature Review

 42

In the previous sections, a number of examples of message passing and shared resource

implementations were covered. These examples are summarized in Table 4. If we were to

compare this table to the languages in Table 2 we would find that mainstream languages tend to

be shared resource languages. Coordination is omitted in this table, as it tends to be adapted to

a language rather than a feature of any language on its own. For example, Linda has been

adapted to Java in the JavaSpaces (Sun 1998) API.

Literature Review

 43

2.6 Related Work

Initially when the Join calculus was announced there was one main design that was based on

this work called Functional Nets(Odersky 2000). This used some of the concepts of the Join

calculus and Petri-nets(Peterson 1981) and applied them to functional languages. This

implementation later evolved into the language Funnel(Odersky 2000). The Join Java language

itself used the ideas of the Join calculus but adopted the syntax of Funnel. The work of Nick

Benton, Polyphonic C#9 at Cambridge followed the same development ideas as that of Join

Java. This language has a number of similarities with that of Join Java. Benton has

acknowledged Join Java was a simultaneous discovery in his latest paper.

The work that is most closely related to Polyphonic C# is that on Join Java
[Itzstein and Kearney 2001, 2002]. Join Java, which was initially designed at
about the same time as Polyphonic C#, takes almost exactly the same
approach to integrating join calculus in a modern object-oriented
language.(Benton 2004)

2.6.1 Similarities between Join Java and Polyphonic C#

Join Java introduces two main concepts to Java, that of Join methods and asynchronous

methods. Polyphonic C# also adds two main concepts Chords and asynchronous methods.

Effectively with some minor syntactic differences, the Chord is an identical structure to that of a

Join method. Asynchronous methods in Join Java have a signal return type. Asynchronous

methods in Polyphonic C# have an async return type.

2.6.2 Differences between Join Java and Polyphonic C#

Whilst these two languages have a number of commonalities, there are also a number of

significant differences between them. The major differences between Join Java and Polyphonic

C# are described below.

1. Each implementation makes use of a different base language. The Join Java extension is

based on the older Java language. Polyphonic C# is based on the more recently released

C# language.

2. Join Java has a richer semantic for modifying the behaviour of ambiguous reductions of

Join methods. This allows the user to specify whether the matching behaviour is

sequential or non-deterministic. This is specified via a modifier that is added to the

9 Polyphonic C# has recently been merged with a new language called Cω.

Literature Review

 44

class declaration. The user sets the modifier (ordered) on the class to specify whether

the pattern matcher uses random selection or first declared priority to select the

appropriate pattern in the event of two or more possible ambiguous reductions of Join

methods. Polyphonic C# does not offer this facility. The Polyphonic C#

implementation is a purely non-deterministic implementation. This would make a

number of design patterns (see Chapter 5) more difficult to implement, as there is no

priority constraint mechanism.

3. To avoid issues with the inheritance anomaly and keep the implementation as simple as

possible Join Java restricts inheritance by making the class final. Join fragments,

however, can be inherited either via interfaces or via extending classes that have abstract

Join methods as abstract method signatures. On the other hand, the Polyphonic C#

language attempts to allow inheritance but in response to the issues involved with the

inheritance anomaly has a number of rules to try to reduce the impact. For example, in

Polyphonic C# if any method of a chord is overridden all chords must be overridden.

This is synonymous with the typical solution to the inheritance anomaly where the

superclass synchronization mechanism must be re-declared in the subclass in order to

ensure that inheritance anomalies do not develop.

4. In Join Java, when declaring Join methods the first fragment can be either asynchronous

or synchronous but all further methods must be synchronous. In Polyphonic C#, only

one method can be synchronous but it can be any method.

5. The research for Join Java explored various pattern matchers. The polyphonic C#

research did not pursue this avenue.

6. Join Java does not need to restrict ref/out operators in the Join methods as the base Java

language does not support passing of references to stack frame variables. This

difference is more a function of the base language than the extension.

7. The research into the usefulness of Join Java covered a number of design patterns in an

attempt to have a true evaluation of the usefulness of the extension. The Polyphonic C#

research did not pursue this avenue instead pursuing a more formal approach to

evaluation of the language.

Literature Review

 45

2.6.3 Summary

Whilst the Polyphonic C# and Join Java languages are superficially quite similar there are a

number of significant differences. These differences can be categorized into engineering

differences and research directions. Firstly, the engineering differences between building a Join

calculus extension to Java and C# are significant. The Java JVM is much more restrictive at the

byte code level forcing the extension designer to be quite creative in the implementation of the

compiler. For example the lack of boxing and unboxing operations. The .net framework on the

other hand has a large number of additional language features such as boxing and unboxing

which allows easier translation of the extension. Also Java does not allow pointer arithmetic

which means that there is a level of indirection that can sometimes reduce performance. For

example storage of waiting parameters can be complicated in the pattern matcher. Secondly,

the research directions were quite different. The Join Java approach was to better support

programmers trying to implement design patterns and higher-level concurrency semantics.

Consequently a thorough coverage of design patterns was undertaken which yielded a number

of issues that could only be solved using priority constraints (ordered modifier).

Literature Review

 46

2.7 Conclusion

In this chapter, the idea of abstraction was initially studied. In the first section, a model of

abstraction that suggests that by increasing the level of abstraction of concurrency one can

decrease the difficulty in creating safe concurrent code was proposed. The Join calculus, the

basis of our extension to Java, was suggested as a possibility in the next section. The Join

calculus showed promise as a good model of synchronization for higher-level object-oriented

languages. The next section briefly examined the paradigm of object-oriented languages taking

special care to point out features that imply design decisions relevant to the addition of higher-

level concurrency and synchronization. It was discovered that the paradigm is built upon the

ideas of encapsulation and inheritance. Encapsulation is supported by locking state information

of objects away from other objects insisting that they communicate via message passing. This

implies that if concurrency is available in an object-oriented language it should follow the same

design principle of protecting data and insisting on some form of safe message passing between

active threads. The next section examined a number of concurrent object-oriented languages

both academic and mainstream. The languages are categorized using three classifications, actor

vs. non-actor, level of integration of concurrency, and mainstream vs. non-mainstream

languages. The features of the languages were summarized in addition to the communications

mechanisms they use. It was found that the academic languages promise many interesting

features yet are rarely adopted. Alternatively, it was found that mainstream languages are

generally conservative in their concurrency mechanisms. It was suggested that there is room for

modifying existing mainstream languages at the syntax level to incorporate some of the higher-

level concurrency semantics of process calculi. It can be concluded that there needs to be more

work on adopting features from clean academic designs into object-oriented languages that have

already been accepted. In the final section, we examined the related work Polyphonic C#

47

3

Join Java Syntax and

Semantics

The most powerful designs are always the result of a continuous process of
simplification and refinement.

(Kevin Mullet)

Table of Contents

3.1 INTRODUCTION 48
3.2 JAVA LANGUAGE SEMANTICS AND ITS DEFICIENCIES 49
3.3 PRINCIPLES FOR IMPROVING JAVA CONCURRENCY SEMANTICS 55
3.4 JOIN JAVA LANGUAGE SEMANTICS 59
3.5 CONCLUSION 68

Join Java Syntax and Semantics

 48

3.1 Introduction

In this chapter, the concurrency syntax and semantics of the Join Java superset will be

described. The chapter begins with an examination of the interesting anomalies that can occur

when writing concurrent Java programs. These anomalies suggest avenues for improvement in

the language’s concurrency semantics. In the next part of the chapter, Java is examined in light

of the Join calculus. The final part of the chapter gives a description of the proposed new

concurrency extension that we call Join Java.

Join Java Syntax and Semantics

 49

3.2 Java Language Semantics and its Deficiencies

In this section, the semantics of threading and locking in Java are examined. Portions of the

following material are drawn from the Java language specification (Steele, Gosling et al. 1995).

3.2.1 Java Concurrency

There is no specific language syntax support for threads in Java. There is only low-level

support for synchronization via monitor style locking. Instead, the language supplies a

specialized thread class that either is subclassed (see Figure 11) or has code passed to it (see

Figure 12). These threads may be implemented in a number of ways either via hardware

support (true concurrency) or much more commonly via time slicing on a single processor.

Each of these implementations can lead to differing evaluations of the same code based on the

policies of time slicing or hardware implementations. The Java specification is extremely

restrictive on the implementations of the threading model. This leads to JVM’s that do not

implement the entire specification in order to aid optimizations (Sun 1996; Sun 2002). The

Java virtual machine does not specify the conditions under which threads may be pre-empted

therefore Java application threads can be pre-empted at any time. In other words, threads can be

suspended to allow another thread to continue executing its run method. If a thread is midway

through modifying a shared data structure when it is pre-empted, there is the possibility of

double update occurring. This is where data is corrupted by two threads simultaneously

changing the value simultaneously. There are also optimizations in the JVM that lead to

reordering of instructions (Sun 1996). This effectively means that it is impossible to predict the

result of a multithreaded program in Java without additional language support. This support is

via the synchronized keyword introduced in the next section.

In Java, there are two methods of creating asynchronous code. The first method illustrated in

Figure 11 shows how by subclassing the class Thread an advantage can be gained via

inheritance to get concurrent code. However, there are a few limitations to this approach.

Firstly, no parameters are permitted to be passed to a thread specification other than via the

constructor. A wrapper method usually is constructed that will accept parameters and sets

shared variables. The thread then gets the original methods that get the same values. Secondly,

the subclass cannot extend any other class due to Java’s single inheritance restriction. These

problems are mostly a direct result of the thread mechanism not being fully integrated into the

language. This leads to awkward unstructured workarounds to achieve what the software

engineer wants. The second method, shown in Figure 12 remedies some of these problems by

Join Java Syntax and Semantics

 50

passing an object containing the multithreaded code. This solves the second problem of single

inheritance but is still awkward for parameter passing to the threaded code. Alternative Java

methods are presented in chapter 5, for example Figure 62 t1 and t2 methods.

Both methods do not really support parameter passing. Instead, they use either a shared

variables technique as would be the case with Figure 11 or, as would be the case in Figure 12

the addition of get/set methods to pass parameters into the thread. The problem with this

approach is that the shared variable is potentially unprotected if the code is not constructed

carefully. The second approach, using set/get methods to set a variable in the thread is safer.

However, when a thread is created, the programmer must make sure to set the variables before

calling the start method for the thread. Again, there is possibility that if the code is not

constructed carefully it will lead to undesirable consequences. An example of this type of

solution is presented in Figure 13. There are a number of ways this code can be inadvertently

made unsafe. Firstly, the synchronized keywords are necessary on both the set and get methods.

As described in the following section synchronized will allow only one thread to access any

synchronized section of code that is protected by the same monitor. If the programmer omits a

synchronized on one of the methods this would mean that more than one thread can modify the

Figure 11. Using subclassing in standard Java to achieve multithreading

Figure 12. Using interfaces in standard Java to achieve multithreading

public class MyThreadVer1 extends Thread{

 public void run() {
 //some code to be run in parallel
 }

 public static void main(String[] argv) {
 MyThreadVer1 x = new MyThreadVer1();
 x.start();
 }
}

public class myThreadVer2 {
 public static void main(String[] argv) {
 Thread x = new Thread(new Code2Run());
 x.start();
 }
}
class Code2Run implements Runnable {
 public void run() {
 //some code to be run in parallel
 }
}

Join Java Syntax and Semantics

 51

shared variable concurrently leading to the possibility of the program entering an expected state.

Secondly, if the thread object does not protect the shared variable via access modifiers any

external thread can access the data-structure directly bypassing the synchronization mechanism

altogether. It should be noted that this implementation is simpler than in practice as generally it

is considered unwise to synchronize on the threads monitor. Finally, the complexity of these

mechanisms become even more unwieldy if one considers communications between the thread

creator and the thread after the thread is created (see chapter 5). Further description of these

issues can be found in (Lea 1998) and the JSR-166 (Lea 2002) specification.

In this section, a brief overview of the threading mechanism in Java was given. It was shown

how there are two methods of achieving concurrency in the language. Some of the issues

involved with passing arguments into threads were also described. In the next section, the

synchronization construct in Java that allows the threads to pass information safely will be

examined.

3.2.2 Synchronization

The mechanism for serializing access to data-structures is based on an honour system in which

all accessor/mutator of the shared data structure must be synchronized. If one of these

accessor/mutators’ does not follow the synchronization mechanism then the entire data structure

is open to corruption. This section will give two examples that show how weak Java is in

relation to enforcing good concurrent programming at compile time. The first example is the

straightforward omission of synchronization. The second example relates to changing of the

Figure 13. Accessor Mutator Implementation

public class myThreadVer3 extends Thread{
 private SOMETYPE sharedVariable; //must be set
 public void run() {
 //get the shared variable via set get method
 //some code to be run in parallel
 }
 synchronized public void setParam(SOMEOTHERTYPE value) {
 sharedVariable.data = value;
 }
 synchronized public SOMEOTHERTYPE getParam() {
 return sharedVariable.data;
 }
 public static void main(String[] argv) {
 myThreadVer3 x = new myThreadVer3();
 x.start();
 }
}

Join Java Syntax and Semantics

 52

identity of the monitor inside the protected section of code.

The first example of the circumvention of synchronization in Java is the omission of

synchronization. When creating threaded programs in Java any shared variables need to be

protected either by synchronized blocks or synchronized methods. Figure 14 below gives an

example of a variable X that is being modified in synchronized methods safe1 and safe2. This

implies that only one thread is permitted to access the method at any one time. However, a

common error is to omit one or more synchronized modifiers in the code. This is shown in the

example where safe2 has no synchronized keyword. If this occurs, more than one thread can

modify the shared variable leading to corrupted shared data. In the example, this means that

one thread can access safe1 and any number of threads can access safe2.

The second example of the circumvention of synchronization in Java is the modification of the

monitor lock object reference. Figure 15 shows an example of how someone can either

intentionally or unintentionally break the locking semantics of Java. In the example, a protected

section of code is synchronized on the object lockingObject. Half way through the

synchronized section of code the programmer changes the object that the reference

lockingObject points to. From that point on the code is unprotected and any other thread may

enter the code section as the lock has been replaced with the new object newObject. An

analogy of this program is locking your house and having a burglar replace the entire door

(including the lock) in order to open it. Consequently, it is important to remove access to the

locking object itself from the user. The moral is that the shared variables must be packed with

the lock that protects them. This is exactly what the synchronized modifier for a method does.

The monitor is associated with the object, which holds the shared variables. In likelihood, these

problems may not occur frequently in practice. However, it does illustrate some obvious

Figure 14. Omission of Synchronized Keyword

public class BreakSync {
 SomeObject X = new SomeObject();
 //…

 synchronized public void safe1() {
 if(X.someCondition)
 X.someMethod();
 }

 public void safe2() {
 if(X.someCondition)
 X.someOtherMethod();
 }
}

Join Java Syntax and Semantics

 53

deficiencies that would probably spawn more dangerous and subtle problems.

There are two possible solutions to this problem. Firstly, the language designer could ban the

modification of a reference to a locking object in the section of code that it locks. This

approach would complicate the compilation process, as the abstract syntax tree would need

extra decorations in addition to checks for the code dealing with entry and exit and assignment

of the locking object. Similarly, the programmer could also make the object final so that

modification is flagged by the compiler. The second solution to this problem is to hide access

to the locking object from the user. This is a further abstraction of the design ideal that Java

already possesses in which it stops the programmer from directly modifying the monitor within

an object. If the programmer is denied direct access to the object on which the locking is

conducted, there is no chance of unfortunate situations like the previously presented one

developing. However, one could argue that this denial of access to the locking object may

restrict the usefulness of the synchronization mechanism. Consequently, if one was to deny

access to the locking object the replacement mechanism needs to be very flexible. One way to

do this is to abstract the mechanism from being a purely locking device to a communications

medium. For example, a communications channel abstraction could be created that would

mean the locking is implicitly done for the programmer.

3.2.3 Wait/Notify

The thread blocking semantics in Java are implemented via the wait/notify operations on the

monitor. When a thread is waiting on a monitor it will release its locks and suspend itself until

a corresponding notify on its monitor occurs. The problem with these low-level semantics is

that they can be called from anywhere in the environment as long as the caller acquires the

Figure 15. Dangerous Modification of Monitor Object

public class BreakSync {
 Object lockingObject = new Object();
 static int counter=0;

 public void broken() {
 synchronized(lockingObject) {

 //various code

 lockingObject = new Object();
 //from this point code is no longer protected
 //code here that modifies supposed
 //protected data could corrupt the data structure
 }
 }
}

Join Java Syntax and Semantics

 54

monitor lock. This leads to a situation synonymous to that of the gotos (Dijkstra 1968) in old

imperative languages. Because there is no locality for the wait and notify, these methods can

be called from anywhere as long as the monitor lock is acquired. This leads to situations where

encapsulation violations are generated as objects modify the state of other objects. This is a

violation of one of the core principles of the object-oriented paradigm. Notify also is non-

deterministic in that when it is called it will pick a single waiting thread and wake it. The thread

that is woken is arbitrary and dependant on the platform implementation. To avoid the non-

deterministic race condition it is suggested that the programmer set a condition and a wait in a

while loop that tests the condition. Then all threads wake up via a notifyAll call and check their

individual condition flags. They either then go back to sleep or continue on the basis of the

condition. It would be advisable to try to avoid this low-level method of passing control

between threads as it is non-localized and leads to highly coupled software. High coupling

defeats the encapsulation ideal of the object-oriented paradigm. A possible solution to this

problem is to create a special object that hides its lock behind a private interface. The user then

calls public lock and unlock methods. This approach leads to awkward mechanisms as locks

are now separated from the code. Because it is not making use of the monitors in the local

object, rather using what is effectively a library this approach suffers from all the issues of a

library approach to concurrency. Finally, as the lock is removed from the local code scope,

automatic scoped locking and unlocking is no longer available, leading to potential dead locks.

In this section, it has been shown that there are significant weaknesses in the Java concurrency

semantic that could be improved.

Join Java Syntax and Semantics

 55

3.3 Principles for Improving Java Concurrency Semantics

In this section, the thesis investigates the requirements for extending the concurrency in Java.

The high-level requirements for the Join Java extension are examined. With these high-level

requirements a novel approach to improving the synchronization and inter-thread

communication of Java can be proposed.

3.3.1 High-Level Requirements

A primary motivating factor in this research is to make it easier, safer, and more natural for a

programmer to write multithreaded code. In this research, a number of characteristics that

contribute to achieving that aim are identified. The requirements are;

1. Faithfulness: The primary priority was to be faithful to the original language paradigm.

It was seen in section 2.5 that the object-oriented concepts of Java such as

encapsulation, inheritance, and intra-object message passing are critical to the paradigm.

Consequently, any new features added to the language should support and/or

complement these features as much as possible.

2. Increased robustness against programmer error: This is achieved by providing a

mechanism that can be checked at compile time. Higher-level abstraction (see section

2.2) should also encourage designs that do not have low-level problems such as

omission of locks (see section 3.2) on shared variables.

3. Performance: An important requirement is that the performance of the extension is not

markedly less than that of a standard Java implementation running on the same

particular hardware/software architecture.

4. Minimalist design: Make minimal changes to the target language and make the

extensions as isolated as possible within the language. That is make as few strategic

syntactic and semantic changes to the language as possible. By making minimal

changes to the language, any person picking up the new extension for the first time will

have an easier time understanding the extension. It has been seen in section 2.5.5 that

mainstream programmers prefer languages based on existing mainstream languages.

This would mean that programmers would be more likely to adopt the extension.

5. Backward compatibly: The extension should be able to accept a standard Java program

and compile to standard byte code. Additionally a program written with the extension

Join Java Syntax and Semantics

 56

should compile back to standard byte code. The advantage of this is that any program

written in the extension language or the standard language and compiled with the

extension compiler will run on any standard Java virtual machine. The disadvantage of

this approach is that the extensions have to be translated into standard byte code. This

also leads to some performance decrease, as you are not able to optimize the JVM for

the extension.

6. Message passing mechanism that complements the method call technique of serialized

applications: In this way, changes to the language are minimized whilst being faithful to

the original languages paradigm. The locking paradigm popular in a large proportion of

concurrent languages is counter intuitive to the language paradigm in which

communications between entities (in most cases objects) should be as restricted as

possible. Implicitly, locking mechanisms in a large proportion of industry languages

can be considered to be global variables in which different threads of execution dip in

and out as they like. More importantly, each thread of execution is expected to obey

access guidelines, for example they should only use synchronized accessor/mutator

methods to modify the global data structure. If the thread of execution misbehaves and

accesses the data structure directly all synchronization is invalidated. In object-oriented

paradigms, a core concept is that entities should tightly control the access to their state.

Generally, in serialized applications this is done by method calls and access modifiers.

In concurrent applications, this same ideal should hold with a communications channel

being formed between two entities (threads) to send information.

7. True superset: A language extension should not interfere with the base language

method of communication between threads. Consequently, any extension should be a

separate syntactic structure to the original mechanism to avoid confusion for the

programmer.

8. Locks for communications channels will be hidden from the programmer: Hiding the

locking mechanism will reduce the possibility of locking mechanisms being

circumvented and hence improve the safety of the code. This criteria is limited by the

seventh criteria. Consequently, the language should be designed so that the

modification of the lock is unavailable when using the extension method of

synchronization. However, for backward compatibility reasons the access to the locking

mechanism in Java has not been modified.

Join Java Syntax and Semantics

 57

3.3.2 Extension Decisions in Intra-Process Communications

Using the presented high-level requirements, an existing language development library and

existing concurrency semantic were chosen. By using technologies that already exist, the

possibilities of flaws in the design of the extension are reduced and the complexity of the

language design simplified.

One decision made was the selection of the high-level semantics for concurrency and, more

specifically, communication to be used in the extension. There are number of interesting

approaches already existing that fall into three categories relating to communication (Andrews

2000). The three categories are Shared Variables, Message Passing, and Coordination. By

coordination, Andrews means, a mechanism based on shared tuple spaces. The author goes on

to introduce three additional categories however; these categories are more related to

parallelism of code or abstract models. With respect to language integrated communications

constructs the categories both Ada (via protected types), and Java (via synchronized variables)

use shared data variable models for communication whilst CSP (Hoare 1980) and Occam

(Inmos 1984) (among others) use synchronous message passing. Although Java already

supplies a message-passing mechanism via remote procedure call, (RPC) this mechanism is

chiefly used as a distributed mechanism rather than a parallelised code mechanism. Secondly,

the RPC mechanism is via libraries and one of the aims of this thesis was to integrate more

closely the extension into the language and semantics. The third category of integration is

coordination in which languages such as Linda (Gelernter 1985) and JavaSpaces (Sun 1998), a

derivative of Linda, use a tuple space to coordinate the interaction between different language

domains. In the extensions design, some of the concepts of the coordination languages are

borrowed and then applied to message passing at the syntax level of the language. For example

coordination mechanisms use tuples to dynamically choose communications channels. If the

extension could make use of this dynamic nature an extremely flexible intra-process

communication mechanisms could be introduced.

3.3.3 Concurrency Semantic Choice

Join calculus gives an excellent mapping to the requirements. The calculus was designed to

have the ability to form communications channels when coupled with method signatures rather

than the customary continuation passing style of other calculi. The design of the Join calculus

also implies that the synchronization locks for the communication channel can be hidden inside

the channel structure. This will increase the safety of the language structure avoiding the

Join Java Syntax and Semantics

 58

possibility of the programmer changing the identity of the lock whilst the lock is being used.

An additional advantage of the Join calculus is the dynamic channel formation via the variation

of members of a reduction (see section 2.3.2). This matches with the coordination style channel

structure required in section 3.3.2. Another requirement was that the design should make

minimal changes to the existing language implicitly. This is also a requirement of the calculus

as well. Consequently, whilst parameterised Join calls and synchronous method calls are added

the extension did not allow multiple synchronous calls in the same method (see Section 3.4).

Another requirement for integrating Join with Java is that the fundamental idea of explicit

synchronization is preserved. This can be done via the extension specifying the channel

formation rules explicitly in the syntax.

Join Java Syntax and Semantics

 59

3.4 Join Java Language Semantics

Given the apparent weaknesses of the Java approach already presented it could be argued that

some of the opportunities presented by formal semantics such as the Join calculus should be

used to improve Java’s concurrency semantics. In this section, such an extension is introduced.

First, the changes made to the Java language are specified. Next, the syntax and semantics of

the new language are informally examined. Finally, some of the semantic issues arising from

the extension are investigated.

3.4.1 Changes to the Language

In this section, the syntax and semantics of the Join superset of Java are introduced.

Join Java makes three syntactic additions to Java.

1. Addition of Join methods for synchronization and channel construction.

2. Addition of a signal return type for creation of asynchronous (threaded) methods.

3. Addition of ordered modifier to classes to specify deterministic reductions in Join

methods.

Using these three additions, the mechanisms of synchronization (section 3.4.1.5), dynamic

communications (section 3.4.1.3) and thread creation (section 3.4.1.6) in Join Java are made

straightforward. Synchronization and dynamic communication is only slightly more complex

than writing and calling standard Java methods. The syntax of the language extension is

provided in Figure 17.

3.4.1.1 Join Methods

A Join method (see Figure 16) in Join Java gives the guarded process semantics of the Join

calculus to Java. That is the body of a Join method (See JoinMethod in Figure 17) will not be

executed until all the fragments (See IdentFrags in Figure 17) of a Join method are called. If a

Join method is defined with pure Java return types such as void or int the first fragment has

blocking semantics. If the return type of the leading fragment is the new type signal the

Figure 16. A Join Java Method

 int fragment1() & fragment2(int x) {
 //will return value of x
 //to caller of fragment1
 return x;
 }

Join Java Syntax and Semantics

 60

fragment is asynchronous (an early return type). Trailing Join fragments are always

asynchronous. When a fragment is asynchronous, this means they will not block the caller of

the fragment. A non-Join Java aware class can call methods in a Join Java class even if the

return type is signal. In the case of a signal return type the caller will return immediately as if it

called an empty void method. In Figure 18, an example of a Join Java method declaration

within a Join Java class is presented.

The Join method would be executed when calls are made to all three fragments (A(), B() and

C(int)). A call to method A() will block the caller at the fragment call until fragments B() and

C(int) are called due to the requirement that a value be returned of type int. When all method

fragments have been called the body of the corresponding Join method is executed returning the

int value to the caller of A(). The message passing channel in the example is therefore from the

caller of C(int) to the caller of A() as there is an integer value passed from the argument of

C(int) to the return type of A(). The call to B() only acts as a condition on the timing of the

message passing. One thing to note is that the fragments A, B and C do not have method bodies

Figure 17. Join Java Language Extension Syntax

Figure 18. A Join Java Class Declaration

ClassDefn = [JoinClassMods] class Ident { ClassDefnItems }
ClassDefnItems = [ClassDefnItem] [ClassDefnItems]
ClassDefnItem = VarDecs | BlockDefn | MethodDecl | JoinMethod
JoinMethod = [Modifier] ReturnType IdentFrags { Statements }
ReturnType = signal | void |UserDefined | BaseType
IdentFrags = Ident(ParamList)[&IdentFrags]
Ident = any legal Java identifier
JoinClassMods = any legal class modifier and ordered
Modifier = standard Java method modifiers
BlockDefn = standard Java block definition
VarDecs = standard Java variable declarations
MethodDecl = standard Java method declaration
ParamList = standard Java method parameters
Statements = standard Java method body
UserDefined = standard Java class types
BaseType = standard Java base types

A Join method can be placed at any point that
a normal Java method can be legally placed.

final class SimpleJoinPattern {
 int A() & B() &C(int x) {
 //will return value of x
 //to caller of A
 return x;
 }
}

Join Java Syntax and Semantics

 61

of their own. The invocation of any single fragment does not necessarily invoke the method

body. Only when a complete set of Join fragments that forms a Join method have been called

does a Join method body execute. Static Join Java methods are in principle allowed.

3.4.1.2 Join Method Pattern Matching

A single Join method is a straightforward evaluation; however, Join fragments can take part in

different Join methods as is illustrated in Figure 19 below. It can be seen that the Join fragment

A() takes part in three patterns. Also the asynchronous fragment D() takes place in two Join

methods. Semantically this means that the first method that is completed (has calls to all its

Join fragments) will be executed. A situation that can occur is when a choice has to be made

between two or more simultaneously completed Join methods. For example if B(), C() and D()

were called followed by A() there is a choice in which Join method to run. Two alternatives in

handling this situation exist; a non-deterministic (pseudo-random) selection or, some predefined

selection policy. In the prototype extension, both options are provided. The default behaviour

is to select a pattern randomly. However, the programmer can modify the behaviour of the Join

methods by using the class modifier ordered in which case patterns are executed in the order in

which they are declared. As Java’s JVM is non-deterministic in relation to thread time slicing it

is impossible to design a contention strategy for Join Java. Consequently, in the event of

concurrent method invocations it is left to the JVM to decide which thread has precedence.

When there are multiple calls to a leading fragment and there are no fragments available to

complete the Join method the calls are blocked and then queued internally by the pattern

matcher. When a fragment arrives that completes the Join method the blocked calls are released

in FIFO order.

3.4.1.3 Dynamic Channel Formation

Parameterized Join fragments can also be used to create channels. For example in Figure 20, a

Figure 19. Shared Partial Patterns

final class SimpleJoinPattern {
 void A() & B() {
 }
 void A() & C() {
 }
 void A() & D() {
 }
 signal D() & E() {
 }
}

Join Java Syntax and Semantics

 62

caller to input1 will pass a message to the waiting caller of output via Join method 1. However,

the channel creation becomes dynamic when one considers the second Join method which has a

different second Join fragment (input2). Now if there is a call to input1 waiting when output is

called then Join method 1 executes. However, if there is a call to input2 instead then Join

method 2 will be executed. These decisions are made at runtime via a “pattern matcher”.

3.4.1.4 Matching Behaviour

The default behaviour simulates non-determinism by randomly selecting one of the

simultaneously completed Join methods. If the ordered keyword is used simultaneously

completed patterns are selected based on their definition order in the source code. Any number

of other policies could be added such as “fair” scheduling.

3.4.1.5 Synchronization

One of the problems identified earlier in Java is the ability for the programmer to change the

identity of the lock midway through a synchronized block of code. This is done when a user

uses the synchronized block syntax to lock a section of code. Consequently, in the extension

the necessity of using this access to the lock is removed from the user. This is done by

enclosing the locking mechanism within the channel creation handling code of the Join

methods. It should be noted that the synchronized keyword could still be used to protect the

content of the method from multiple accesses. However, synchronization can be omitted if the

programmer was to use a Join fragment to act as a synchronizer (see Chapter 5).

3.4.1.6 Asynchronous Methods

A Join fragment with a signal return type indicates that the fragment is asynchronous. Any

fragment with a signal return type specifies that on being called a thread will be created and

started. Figure 21 shows an example declaration of a thread with argument x.

Figure 20. Channel Example Code

final class SimpleJoinPattern {
 //Join method 1
 int output() & input1(int parameter) {
 return parameter;
 }

 //Join method 2
 int output() & input2(int parameter) {
 return parameter;
 }
}

Join Java Syntax and Semantics

 63

3.4.2 Type System

The type system in Java was left largely unchanged by the modification. The only modification

to the type system is the signal return type. This was done by reusing the void type’s

characteristics except for the timing of the return. Consequently, to the type system a call to a

signal return type Join Java fragment will appear to be a call to an immediately returning void

method. Internally the signal thread creates (or reuses) a thread to create the asynchronous

executing code immediately returning to the calling method.

3.4.3 Relation between Join Java and Java

In this section, the interaction of the Join Java extension and the Java language are investigated.

Issues regarding inheritance, overloading, interfaces and polymorphism are covered.

3.4.3.1 Inheritance

Join Java classes can inherit other classes just like standard Java. In the current extension,

inheritance of Join classes is disabled. Effectively a Join class is declared final. The main

reason this has been done is to concentrate on the expression of concurrency and the

communications mechanisms. If inheritance were allowed, one would have to deal with the

inheritance anomaly. These problems have also been looked at by (Fournet, Laneve et al. 2000)

and has been showed to be a difficult problem to solve. A future modification of the compiler

could be made to the pattern matcher so that it would check for superclass Join pattern matchers

and import those to the base class. This is discussed in section 8.3.

3.4.3.2 Overloading

Join Java supports ad-hoc polymorphism, in which the signatures of methods are defined by

both the name and the arguments. This allows programmers to use the same object-oriented

features that they normally use in the context of the rest of the language. For example, Join

fragments may take part in several Join methods if their signatures and names are identical.

Figure 22 shows an example of a class with five distinct Join fragments. The first A fragment in

Figure 21. Thread Example

class ThreadExample {
 signal thread(SomeObject x) {
 //thread code that uses parameter x
 }
}

Join Java Syntax and Semantics

 64

the first pattern and third pattern are the same, however, the A fragment in the second pattern is

different as the signature is different.

3.4.3.3 Interfaces

Join methods are normally an implementation structure consequently they are not available in

interfaces. However, Join fragments can be specified in an interface. This allows a user to

define the Join methods separate from the definition of the Join fragments. This would mean

that you could have dynamic loading of channel definitions. In Figure 23 an example of an

interface (ChannelInterface) for some Join fragments is presented. Two possible

Figure 22. Polymorphic Join Java Fragments

Figure 23. Interfaces in Join Java

final class SimpleJoinPattern {
 void A() & B() //Join method one
 {
 }
 void A(int value) & C() //Join method two
 {
 }
 void A() & D() //Join method three
 {
 }
}

interface ChannelInterface {
 public void b();
 public int a();
 public signal c();
 public signal d();
 public signal f();
}
class Implementation1 implements ChannelInterface{
 public int a() & c() {
 return 0;
 }
 public void b() & d() {}
 public int a() & f() {
 return 0;
 }
}
class Implementation2 implements ChannelInterface {
 public int a() & c() & d() {
 return 0;
 }
 public int a() & c() & f() {
 return 0;
 }
 public void b() & c() & f() {}
}

Join Java Syntax and Semantics

 65

implementations (Implementation1 and Implementation2) of dynamic channels are also shown.

At runtime, the implementation to use for channel creation can be selected dynamically. Figure

24 gives a short example of using the interface to polymorphicaly select channel creation

behaviours at runtime. It can be seen that at runtime the pattern matcher is selected based upon

the value of the Boolean variable someValue. If the value of the variable is true, the

Implementation1 channel definition is used otherwise Implementation2’s definition is used.

This consequently affects the behaviour of the matching later in the program.

3.4.3.4 Polymorphism

As can be seen in the previous sections and Figure 24 a form of polymorphism is possible with

Join enabled classes just as in any normal object-oriented language. Implicitly Join methods

themselves are polymorphic, that is the Join fragments that are called at runtime decide which

Join methods are eventually evaluated. For example in Figure 25 a runtime decision on which

pattern is evaluated based on the previous calls to Join fragments can be seen. When A() is

Figure 24. Using Interfaces in Join Java

Figure 25. Polymorphism in Join Java

class ExamplePluggableChannels {
 …
 ChannelInterface channels;

 public static void main(String[] argv) {
 …
 if(someValue) {
 channels = new Implementation1();
 } else {
 channels = new Implementation2();
 }

 …//behaviour dependent on runtime condition above
 channels.f();
 channels.c();
 channels.b();
 }
}

class PolymorphismJoinJavaExample {
 //Join method one
 void A() & B() {
 //some code
 }

 //Join method two
 void A() & D() {
 //some code
 }
}

Join Java Syntax and Semantics

 66

called it will depend on whether B() or D() was called previously as to which Join method is

completed. In the former case Join method one will be called, in the latter case Join method two

will be called.

3.4.3.5 Inheritance Anomaly

A well known problem with combining concurrency and object-oriented paradigms is the so

called inheritance anomaly (Matsuoka, Wakita et al. 1990; Matsuoka and Yonezawa 1993).

Simply put, inheritance anomalies lead to the necessity to re-declare a base class method’s

coordination mechanisms in a derived class. Join Java does not attempt to solve this problem,

as it was not the primary focus of this work. At initial inspection, it seems that Join Java neither

encourages nor discourages instances of inheritance anomalies. However, having

synchronization code in method signatures should make identification of inheritance anomalies

easier.

3.4.3.6 Dead Locks

Join Java does not solve the dead lock problem directly. It is still possible to write code that

creates a dead lock. In Figure 26 a straightforward dead lock is illustrated. Join method one

cannot proceed beyond the call to C() until a call to D() is made. But the call to C() is blocked

waiting for a call to D() which occurs after it finishes. Of course C() cannot finish hence dead

locking occurs. Conversely, a similar situation occurs on Join method two.

With the explicit definition of synchronization, the compiler should be able to warn of possible

dead lock situations. This could be done by creating a dependency graph of Join fragments and

the calls within them and then do a topological sort on the result. Any cycles (which would stop

a topological sort) would become immediately apparent and reportable to the programmer as

warnings of possible deadlocks.

Figure 26. Deadlock in Join Java

class DeadLockingJoinJava {
 void A() & B() { //Join method one
 C();
 D();
 }

 void C() & D() { //Join method two
 A();
 B();
 }
}

Join Java Syntax and Semantics

 67

3.4.4 Summary

In this section, the informal syntax and semantics of Join Java were examined. It was shown

that with a small number of simple changes to Java a superior mechanism for synchronization

can be introduced. The changes better reflect the object-oriented nature of the language. The

behaviour of the matching of Join methods and how this leads to dynamic channel formation

was also examined. Finally, the issues surrounding the interaction of Join Java and the object-

oriented paradigm were examined.

Join Java Syntax and Semantics

 68

3.5 Conclusion

In this chapter, the concurrency, syntax and semantics of the Join Java superset was described.

The chapter began with an examination of the interesting anomalies that occur when writing

concurrent Java programs. It was found that even though Java’s concurrency mechanism is

sufficient it still has problems. Programmers can arbitrarily change lock identities within the

body of a supposedly protected region of code. This can lead to code that looks protected being

unprotected. Another problem is that synchronization has to be used at the correct places

otherwise; any single omission invalidates all other synchronized code. These anomalies

suggested avenues for improving the language’s concurrency semantics. Using these problems

as a starting point, a number of high-level requirements for the extension were then identified.

These requirements identified criteria that were critical to the usability of the extension. The

chapter then showed how Java could make use of some of the novel features of Join calculus to

create a superior synchronization mechanism. The next part of the chapter gave a description of

the proposed new concurrency extension that is called Join Java. Finally, the chapter examined

the interaction of the Join Java extension to other features of the language.

69

4

Implementation

A good scientist is a person with original ideas. A good engineer is a person
who makes a design that works with as few original ideas as possible.

(Freeman Dyson)

Table of Contents

4.1 INTRODUCTION 70
4.2 COMPILER CHOICE 71
4.3 TRANSLATOR 72
4.4 PATTERN MATCHER 98
4.5 ISSUES IDENTIFIED IN THE PROTOTYPE 109
4.6 CONCLUSION 111

Implementation

 70

4.1 Introduction

In this chapter, the implementation of the Join Java compiler is covered. Structurally the

extension is divided into two components. The first component is the translator that extends the

standard Java compiler to support the new syntax and semantics of the extension language. The

translator converts the Join Java code into standard Java byte code, which can then be executed

on a standard Java Virtual Machine. The second component of the language is the pattern

matcher. The pattern matcher forms a library of classes that are used by the translated code to

handle the dynamic reduction of Join method calls. This chapter consequently divides the

implementation description into two sections. This chapter demonstrates the feasibility of

implementing the Join Java extension in the Java language. The prototype language extension

also allows performance issues to be investigated more thoroughly. At the end of the chapter,

some of the issues that were discovered in implementing the extension are covered.

Implementation

 71

4.2 Compiler Choice

When writing this language extension a choice needed to be made whether to create an entirely

new compiler, modify an existing compiler or use an available extensible compiler. The major

disadvantage of writing a new compiler for a language extension that extends a rich language

such as Java is the considerable time required to get a standard compiler to a stable level. The

main advantage is that once the base compiler is written the extensions tend to be easier to add,

as the developer is very familiar with the entire environment. A major disadvantage of

modifying an existing compiler is that it may be extremely difficult to add extensions if the base

compiler has no provision for the extensions. Rewrites of the entire compiler front end are

frequently required. The other strategy is to adopt an extensible compiler. These compilers

give us the advantage that they are designed to be extended thus do not suffer from the

headaches involved with modifying a standard compiler. The main disadvantage is usually a

performance penalty due to the generic nature of the compiler architecture. The extensible

compiler was chosen to implement the Join Java extension. In the following sections we justify

that decision.

With respect to engineering the extension, three major requirements for our compiler were

identified. The ability to:

1. Translate the extension into standard byte code for JVM portability.

2. Translate the extension intermediate abstract syntax tree (AST) into standard Java code

for debugging purposes.

3. Use Java itself as the implementation language of the compiler.

A number of lesser requirements such as access to the designer of the base compiler were also

identified. At the time of the design of the language extension, there were limited possibilities

that fit these criteria. The core Join Java compiler was based upon the extensible compiler

developed by (Zenger and Odersky 2001). This compiler provided an excellent mapping to the

requirements mentioned above. Later a number of further possibilities became available such

as JSE (Bachrach and Playford 2001) and Maya (Baker and Hsieh 2002) which could also have

been used.

Implementation

 72

4.3 Translator

In this section, an overview of the extensible compiler is provided. The Join Java compiler is

based on an existing Java compiler that has a modifiable architecture specially designed with

extensibility as a primary design objective. In the first half of this section, a brief explanation of

the extensible compiler is given in order to better explain our extensions. More detailed

information is available from (Zenger and Odersky 1998). In the second half of this section, a

description of how these features have been used to implement the Join Java language is given.

With this extension, it has not been necessary to modify the core architecture of the extensible

compiler. All the modifications are in the form of subclassing of existing program structures

that are by their nature specific to each version of the language being compiled.

4.3.1 The Extensible Compiler Architecture

The object structure of the extensible compiler(Zenger and Odersky 1998) was specially chosen

to make extensions easy by confining each new language feature to extending a limited number

of existing classes. The extensible compiler is the work of Matthias Zenger at EPFL (Zenger

and Odersky 1998; Zenger and Odersky 2001). The language that the compiler supplies (in this

case the standard Java language) will be referred to as the base language. The new language

that is being implemented will be called the extension language (in this case Join Java). The

extensible compiler was chosen in the belief that extending an existing compiler designed with

extensibility in mind would be easier to prototype than starting with an existing standard

compiler.

The fundamental idea behind the extensible compiler is that given a base language implemented

in the extensible compiler the addition of new language structures is achieved by subclassing of

existing program structures. The extensible compilers architecture is similar to many other

compilers. It has the standard lexer, scanner, parser10 and semantic analyser phases in the front

end and code generator and optimizer phases in the back end. For details of these standard

elements see any of the more popular standard texts such as (Aho, Sethi et al. 1986). Each

phase creates, modifies or uses an abstract syntax tree. The lexer, scanner and parser together

create the abstract syntax tree, the semantic analyser attributes it and the backend uses it to

generate byte code. Figure 27 illustrates the modules of the base compiler without translation.

In the standard compiler there is a standard syntactic analyser that creates the abstract syntax

10 These three are sometimes called the syntactic analysis phase together

Implementation

 73

tree, the semantic analyser that checks and attributes the abstract syntax tree, and the backend,

which turns the abstract syntax tree into byte code via the class writer.

In the following section, abstract syntax trees are examined and an explanation of how the base

compiler shown below in Figure 27 is modified to translate a program compiled in the extension

language to standard byte code.

4.3.1.1 Extensible Abstract Syntax Trees

For the compiler to be extensible not only does the compiler architecture need to be extensible,

so do the data structures on which it works. In the case of the extensible compiler, the abstract

syntax tree is constructed in an object-oriented manner. The abstract syntax tree is generic

Figure 27. Stages of Extensible Compiler without Translation

Implementation

 74

enough to store nodes that are designed after the base compiler was written. That is all nodes

have a parent type Tree whilst each node represents the particular type (eg compilation unit,

method, statement etc…) of the tree node. This means the polymorphic design of the abstract

syntax tree data structure allows the tree to store any subclass of the tree node allowing

extended components to be added later. Therefore, to make an addition to the data structure a

subclass node representing the new language feature must be created to attribute the tree for the

Join Java abstract syntax tree. To make changes to the abstract syntax tree there also must be

appropriate tree processing functions in the compiler architecture. It is therefore necessary to

subclass components of the base language syntactic and semantic analysers. In this way

whenever the semantic phase comes across an extension component it knows what to generate

in the extension abstract syntax tree.

Figure 28. Abstract Syntax Tree before Syntactic Analysis

Implementation

 75

4.3.1.2 Syntactic Analysis

The syntactic analysis phase of the extensible compiler is similar to most of the other compilers.

A language definition file is written and a look ahead left to right (LALR) parser generator

(Hudson 1996) is used to generate the scanner and parser code. To make an extension the

programmer obtains the language description file (CUP file) for the base language (with the

base language parsing code) adds the extension language components and regenerates the parser

and scanner phase code. The new scanner/parser can then generate an un-

attributed/undecorated abstract syntax tree for the extension language using the extended

abstract syntax tree. A simple example of one of these trees is shown in Figure 28. In the

example, a simple extension of a language that supports multiplication as well as the addition of

the base language is illustrated. The example, whilst being simple shows how the process of

translation occurs. The changes to the Java grammar for Join Java are given in section 4.3.2.

4.3.1.3 Extension Semantic Analysis

The semantic analysis phase constructs an attributed tree decorated with type information. It

then performs type checking, scope checking, and construction of symbol tables for classes,

methods, variables and constants. When compiling a program written in the extension language

the semantic checker uses additional checks designed by the extension writer to make sure the

code obeys the language rules for the extension. In our example illustrated in Figure 29 it can

be seen that the tree has been decorated with type information. However, in the base language

the multiplication operation is not supported so the tree needs translation.

Implementation

 76

4.3.1.4 Translation

The translator phase converts the attributed extension abstract syntax tree into an attributed base

language abstract syntax tree. The abstract syntax tree output by the semantic analyser is read

by a translator. In the base language version of the compiler, this phase does nothing other than

pass over the tree. The translator is provided for the sole purpose of allowing compiler writers

implementing language extensions to sub-class the translator. The extension language writer

creates a subclass of the translator that in the event of encountering an extended component of

the language converts the node into base language components semantically equivalent to the

extension language. In our example this means converting the multiplication nodes of the tree

into addition nodes semantically equivalent to what the multiplication nodes are trying to

express. The modified tree is illustrated in Figure 30 where the multiplication node has been

replaced with addition nodes that achieve the same aim. This means that from this point on, for

the purpose of compilation, the abstract syntax tree is a base language tree not an extension tree.

Figure 29. Abstract Syntax Tree after Semantic Analysis

Implementation

 77

This has the advantage that the back end does not need to be changed if standard Java byte code

is to be output.

The resultant tree after the translation phase generally needs to be run through a standard Java

semantic analyser (called a silent semantic analyser) to check for translation errors. This phase

checks to make sure the translator has generated a correct base language abstract syntax tree.

The silent semantic analyser also attributes the newly translated nodes of the tree. After the

silent semantic analyser has finished, the abstract syntax tree is passed to the backend for code

generation. Our running example is illustrated in Figure 31.

4.3.1.5 Backend

As the backend of the existing compiler is not altered in the case of Join Java this will not be

discussed in this chapter. For more details see (Zenger and Odersky 1998).

Figure 30. Abstract Syntax Tree after Translation before Silent Semantic Analysis

Implementation

 78

4.3.2 Changes to the Extensible Compiler for Join Java

In Join Java, there are a number of changes that were required to be made to the base compiler.

Firstly, the language semantics needed to be extended to support the idea of asynchronous

methods. Secondly, the language syntax was extended to support Join Java methods and finally

code generation to support pattern matching between Join method fragments was required. This

extension adds to the base compiler, new syntactic analysis phase, a new translation phase as

well as an extra semantic analysis phase. It was also necessary to add a number of subsidiary

classes to support the extensions to the abstract syntax tree and tree walkers for the modified

structures. These changes are shown in Figure 32 in yellow. In the following section, these

additions will be described in detail.

In this section, all the changes needed to implement Join Java in the extensible compiler are

described.

Figure 31. Abstract Syntax Tree after Silent Semantic Analysis

Implementation

 79

Figure 32. Structure of the Join Java Compiler

The translator was subclassed to allow it to process Join Java elements on the abstract syntax

tree and produce a pure Java syntax tree. To assist in the explanation of the translation an

example of a small Join Java program is used. This HelloWorld Program will be used to

illustrate the translation. Figure 33 shows the Join Java code. The program starts with two

threads, the first thread1, which takes a string “helloworld” and passes it to the second thread

thread2 via a Join Method; the second thread then prints the string out to the console.

Implementation

 80

Figure 33. Simple Join Java Hello World Program

In order to compile and translate this to Java byte code an abstract syntax tree, syntactic

analyser, semantic analyser and a translator will need to be created. In the case of Join Java,

these are method nodes, return types and some modifiers for the class nodes that must be

subclassed. These parts are designed and added to the standard Java syntax tree to generate the

Join Java syntax tree. The compiler architecture is then extended to handle the new tree

structures. Finally, a translator is produced to convert the extension language abstract syntax

tree into the base language abstract syntax tree. These alterations are now discussed referring to

the HelloWorld example program above.

4.3.2.1 Extended Abstract Syntax Tree

To store the superset extension of Java it is necessary to create additional node types for the

extensions’ abstract syntax tree. This extension required the nodes representing classes and

methods to be subclassed and new nodes representing Join methods, Join fragments and Join

classes to be created. The most important change is the node representing methods within the

abstract syntax tree. The original structure of the tree was modified to allow a number of Join

fragments to comprise the method signature rather than the customary single method signature.

The original method signature was modified to be a Join fragment for the Join method. In this

way, the Join fragments can be used in other classes without those classes needing to know

about Join Java. The side effect of this is that less code needs to be modified when the Join

fragments are called.

class HelloWorld {
 signal thread1() {
 call2(“helloworld”);
 }
 signal thread2() {
 System.out.println(call1());
 }
 String call1() & call2(String value) {
 return value;
 }
}

Implementation

 81

Java Class

Java
Method

Java Body
Statements

Variable
Declaration

Java
Method

Figure 34. Standard Java Abstract Syntax Tree Example

In Figure 34 an example of a simple abstract syntax tree of Java is shown. The modifications to

that tree to support Join Java methods is shown in Figure 35. It can be seen that there are two

main changes visible. Firstly, a class node is now a Join Java class node that supports not only

standard methods but Join Java methods as well. Secondly, the Join Java method whilst still

having a body, now has additional branches representing each of the fragments that make up the

compound method signature. The final point to note on the modifications of the tree structure is

that the Java method node itself is reused by Join Java with some minor changes to represent a

Join Java fragment.

The Join Java class node differs from a standard Java class node in two ways. Firstly Join Java

classes have an extra modifier ordered that affects the evaluation of Join Java patterns in the

event of multiple reduction possibilities (see the semantic analysis and pattern matching

sections). Secondly, a Join Java class node may have an additional branch type that is a Join

method node.

Implementation

 82

The Join Java method node has a number of differences from a standard Java method node.

The most important difference is that the Join Java method is composed of a number of method

signatures (within sub-nodes), unlike Java that only contains one method signature. To

distinguish this from the signature of the entire Join Java method they are referred to as

fragments. The first fragment is stored in the Join Java method fragment for efficiency and

backward compatibility. However, the second and subsequent fragments are stored within sub-

nodes called Join Java Fragments. The return type of the first fragment becomes the primary

return type of the Join Java pattern. The return types of the sub-node Join Java Fragments are

always signal which is explained in more detail in the following sections.

The final major abstract syntax tree structural change is the Join Java Fragment node. These are

Figure 35. Join Java Abstract Syntax Tree Example

Implementation

 83

functionally very similar to standard Java method nodes in the standard Java abstract syntax

tree. However, there are a few differences. Join Java fragments must have a return type of

signal and have no body of their own as they take part in Join Java method signatures.

4.3.2.2 Syntactic Analyser

The syntactic analyser converts the source code representation of the Join Java program into an

unattributed abstract syntax tree. In the language extension, the standard Java grammar

specification is modified so that the grammar represents the additions/changes of the extension

language. The language definition was extended to include additional class modifier ordered,

the additional return type signal and new compound method signature for representing Join

patterns. The Join Java grammar changes made to the Java grammar are presented in Figure 36.

The parser and lexer are generated from this CUP specification using a standard parser

generator such as JavaCup (Hudson 1996). Using the example from Figure 33 it can be seen

that the syntactic analyser would accept the signal return types and the compound method as

they are valid expressions in the grammar illustrated in Figure 36. After the syntactic analyser

pass has finished the compiler will hold a Join Java abstract syntax tree representing the

example program.

Figure 36. Join Java Additions to Java Grammar

4.3.2.3 Semantic Analyser

The first semantic analyser phase in addition to doing the standard checks and attribution for the

Java nodes of the abstract syntax tree, also handles the checking and attribution of the Join Java

nodes. Consequently, in the compiler extension a walker class passes over the abstract syntax

ClassDefn = [JoinClassMods] class Ident { ClassDefnItems }
ClassDefnItems = [ClassDefnItem] [ClassDefnItems]
ClassDefnItem = VarDecs | BlockDefn | MethodDecl | JoinMethod
JoinMethod = [Modifier] ReturnType IdentFrags { Statements }
ReturnType = signal | void |UserDefined | BaseType
IdentFrags = Ident(ParamList)[&IdentFrags]
Ident = any legal Java identifier
JoinClassMods = any legal class modifier and ordered
Modifier = standard Java method modifiers
BlockDefn = standard Java block definition
VarDecs = standard Java variable declarations
MethodDecl = standard Java method declaration
ParamList = standard Java method parameters
Statements = standard Java method body
UserDefined = standard Java class types
BaseType = standard Java base types

A Join method can be placed at any point that
a normal Java method can be legally placed.

Implementation

 84

tree using the Java semantic analyser for standard Java code and the Join Java semantic analyser

for Join Java code.

As part of the semantic analysis phase, the nodes in the tree are attributed with type information.

This language extension has minimal type additions to Java. The main type change being the

introduction of an asynchronous return type signal. This type has a number of similarities to

the standard Java void type in that they both indicate an absence of return information. The

only difference being that void means that the method returns no information other than the

timing of the return. Signal on the other hand does not even return the timing of the method.

Consequently, in our language due to the similarity of the two types the Join Java extension

maps signal to void in the internal representation. The major benefit is that other classes that

are not Join Java aware may call signal return methods without difficulty. An alternate

approach would be to make a modifier called asynchronous which makes the method a thread.

This avoids the issues with modifying types. However, this was not done for a number of

reasons;

1. If the language were extended to allow synchronous fragments anywhere in the Join

method signature one would have to place the asynchronous modifier in front of most

Join fragments leading to clutter in the method signature.

2. By definition, all asynchronous methods will have to be void. It does not make sense to

allow asynchronous modifiers for non-void return types. Consequently, if this was

implemented as an asynchronous modifier wherever asynchronous was used a void

must always follow. This proves to be an awkward syntactic design

The Join class node needs standard Java style semantic checking in addition to the checks for

the Join methods and Join method fragments. One of the design criteria of Join Java is that it be

as sympathetic to the base language as possible. Java supports ad-hoc polymorphism in that the

signature of a method is composed of the identifier and the types of the parameters. In Join

Java the same idea has been used. A Join Java method is defined by the identifier of each Join

fragment plus their respective parameters. This makes symbol entry into the symbol table

complicated but makes the extension language more like the base language. A related check

that needs to be done is that the return types of method fragments must match the return types

of any other fragment with the same signature. This can be complicated especially when the

return type difference is signal to void. The structure of the parser tends to hide the differences

between these two types. Consequently, once the semantic checking phase has finished there

Implementation

 85

should be one entry per fragment signature in the symbol table even if the fragment is used in

several Join methods. This is important for the next phase of the translation where calls to the

pattern matcher are generated. The semantic checking phase must also check for modifiers in

the class definition. The Join class modifier, ordered changes the behaviour of the pattern

matcher. Consequently, the semantic analysis of this modifier is simply checking that it is only

used on the class definitions not on the method definitions.

4.3.2.4 Translation

The major phase of the compiler extension is the translation phase. This phase crawls across

the Join Java abstract syntax tree converting it into a Java abstract syntax tree. When it has

finished it will leave a semi attributed Java abstract syntax tree. To simplify the presentation of

the extensions the less complex extensions are described first and progressively more

sophisticated features of Join Java are then described. The order of presentation of features will

be;.

1. Asynchronous method calls.

2. Join methods with a signal return type (asynchronous Join method with object

parameters)

3. Join methods with non-signal return types (synchronous Join method with object

parameters and return type)

4. Passing base type parameters to Join method as opposed to object types.

The tree manipulation in the translator can require a number of different modifications to the

tree. It could require one tree node being replaced by another tree node, one tree node being

replaced by a sub-tree or alternatively a node being deleted. Consequently, the tree

manipulation functions take the form of pruning and replacement functions that edit the abstract

syntax tree. As these functions will not be covered in this thesis consult (Zenger and Odersky

1998) for further information. Translation happens in the following way. A tree walker is

supplied which moves over the tree detecting sections of the tree that are Join Java specific.

When a Join Java region is detected, the sub-tree is pruned replacing the section of the tree with

the functionally equivalent Java sub-tree.

Implementation

 86

When the compiler detects Join methods within a class it modifies the inheritance structure of

the class and generates a number of support methods. The translated Join Java class is made to

inherit the JoinInterface interface so that the pattern matcher (for more information about the

pattern matcher see Section 4.4) can make call backs at runtime to notify waiting threads.

In addition to the implementation of the Join interface, a number of methods are also created.

Firstly, an initializer method is generated that creates an instance of the pattern matcher (see

section 4.4) passing a reference to the Join Java object. This reference is of type JoinInterface,

which allows the pattern matcher to make call backs to a generated method within the body of

the Join Java class. The initJoin method then tells the pattern matcher about the Join methods

within the class. The initializer is illustrated in Figure 37, where the method firstly checks for

the existence of a pattern matcher and if it does not exist, creates one. Once the pattern matcher

exists, it then tells the pattern matcher what matching behaviour to use. This is done by

checking the status of the ordered modifier, if the ordered modifier is present sending a true as

a parameter to the setOrdered method of the pattern matcher. The initJoin method also tells the

pattern matcher what patterns are present in the class. This information is passed by the pattern

matchers addPattern method. The addPattern method has two arguments the first argument is

a list of Join fragment identities (integer values) that take place in the pattern and the second is

whether this method is synchronous (false) or asynchronous (true). If a Join fragment appears

in more than one Join method, its identity will appear in each methods’ addPattern call.

Consequently looking at the translated HelloWorld program from Figure 33 the initJoin method

fragment zero is the thread1 Join fragment, fragment one is the thread2 Join fragment, and

fragments two and three are the call1 and call2 fragments respectively.

Figure 37. Hello World Initializer Method in Translated Code

 private join.system.joinPatterns all$;
 synchronized void initJoin$() {
 if (all$!= null)
 return;
 join.system.joinPatterns alllocal$ =
 new join.system.joinPatterns(this);
 alllocal$.setOrdered(false);
 alllocal$.addPattern(new int[]{0}, false); //thread1
 alllocal$.addPattern(new int[]{1}, false); //thread2
 alllocal$.addPattern(new int[]{2, 3}, true); //call1&call2
 alllocal$.noMorePatterns();
 all$ = alllocal$;
 }

Implementation

 87

The second method that is generated is the dispatch method. This method acts as the index of

Join methods within the class. Because the pattern matcher is dealing with various base and

object parameters along with potentially different return types a generic structure must be

created. To make the pattern matcher as simple as possible signatures are replaced with an

integer index. When a reduction (pattern match) occurs the pattern matcher returns an index to

the completed pattern. When a call occurs to a Join fragment the pattern matcher packages up

the arguments into a storage structure (returnStruct) and waits for a completion to occur. A

completion takes place when all fragments required for a Join method are available. When that

completion occurs the returnStructure is modified to contain all the parameters of the Join

fragments along with the index of the completed pattern. That returnStructure is then passed to

the dispatch method by the translated method (see later). Each case in the dispatch method

identifier equates to the order of addPattern calls in the initJoin method.

Figure 38. Hello World Dispatch Method in Translated Code

 public java.lang.Object dispatch$(
 final join.system.returnStruct retStruct)
 throws join.system.joinTranslatorException {
 switch (retStruct.patternCompleted) {
 case 0:
 new java.lang.Thread() {
 public synchronized void run() {
 $_thread1();
 }
 }.start();
 break;
 case 1:
 new java.lang.Thread() {
 public synchronized void run() {
 $_thread2();
 }
 }.start();
 break;
 case 2:
 return call1_$_call2(
 (java.lang.String)retStruct.getObjectArg(3, 0));
 case -1:
 break;
 default:
 throw new join.system.joinTranslatorException(
 "Compiler Error: [JTrans0]: Unexpected case Dispatch");
 }
 return null;
 }
}

Implementation

 88

In Figure 38, above the dispatch method has three cases representing the three methods from the

example code previously shown in Figure 33. The case zero relates to the method thread1, case

one to thread2 and case two to call1()&call2(). The -1 case is for finishing asynchronous

methods that are not required to be blocked. The remaining case default relate to error checking

for the translation and debugging. When a pattern has a signal return type the call to the

method body is wrapped in an anonymous inner thread. This creates the asynchronous

behaviour of the signal return type. If the return type is void the method is simply called. If the

return type is an object the returnStructure’s getObjectArg method is called to retrieve the

object from the structure. The return value is then returned to the caller which is the translated

version of the Join fragment.

The third generated method is a notify method, (Figure 39) which acts as a synchronized access

point for the pattern matcher to modify the object’s monitor. This method could be better

designed in an optimized version of the compiler however; it works for proof of concept with

reasonable speed.

Figure 39. Hello World Notify Translated Code

The final translated code for the language extension is the Join methods/fragments to Java

methods conversion. For every Join fragment, a new Java method is created. In Figure 40 the

Join method call1() & call2(<String>) translation is shown. The translated methods thread1

and thread2 would be similar to call2 and hence are omitted for brevity.

 public void notifyJoin$() {
 synchronized (all$) {
 all$.notifyAll();
 }
 }

Implementation

 89

Figure 40. Hello World Join Method Translated Code

The content of the translated Join methods is dependent on the synchronicity of the Join

fragment. The simpler translation of the two is presented first. If a method is asynchronous, for

example call2 that has an asynchronous return type, there is no requirement for return messages

to be sent back to the caller. Consequently, the translation is simpler and needs only to check

for the availability of a pattern matcher then pass the arguments to the pattern matcher. If the

addition of this fragment call to the pattern matcher results in a pattern being completed of

which the fragment is the first fragment then the returnStructure that is returned from the

pattern matcher will have a completion information including the identifier of the completed

pattern. If the fragment is not completing a pattern or it is not the first fragment of the

completed pattern the pattern matcher will return a -1 identifier which tells the dispatch method

to do nothing and end.

The other possible translation of a Join fragment is if the Join fragment is synchronous, that is it

has a return type of void, a base type or a object type. In this case the caller needs to wait on the

completion of these fragments. The translated methods are more complicated as they have to

 String call1() {
 if (all$ == null)
 initJoin$();
 join.system.returnStruct retval$ =
 all$.addSynchCall(
 new java.lang.Object[]{}, 2, this);
 while (retval$.ready != true) {
 try {
 synchronized (all$) {
 all$.wait();
 }
 } catch (java.lang.InterruptedException ex) {
 Throw new
 join.system.joinTranslatorException
 ("Interrupted Exception …");
 }
 }
 return (String)dispatch$(retval$);
 }

 void call2(String value) {
 if (all$ == null)
 initJoin$();
 join.system.returnStruct retval$ =
 all$.addCall(new java.lang.Object[]{value}, 3);
 dispatch$(retval$);
 notifyJoin$();
 }

 String call1_$_call2(String value) {
 return value;
 }

Implementation

 90

exhibit blocking semantics. As in the asynchronous method, the first step in the translated code

is to check for the existence of a pattern matcher. The method then adds the call to the pattern

matcher that immediately returns a returnStructure containing information about the success or

failure of the match. If there is no match the returnStructure field ready is set to false and the

translated method enters a while loop that blocks until a notify occurs. Eventually when this

fragment is completed by other fragments being called, the ready field is changed to true and

the pattern matcher calls notify and the dispatch method is called with the completed

returnStructure. The dispatch method will then call the body of the Join method. The method

body method is constructed by appending the names of all the fragments with _$_ between

them and then collecting all the parameters of the various fragments and making them the

parameters of the method body method. This can be seen in Figure 40 where the method

call1_$_call2 contains the method body code and has the parameters of all the fragments. The

return type of the translated method is the same return type as the Join method that was

translated. The dispatch method will also return an object that is cast back to the type of the

return type of the method. This is how the return values are passed back out of the pattern

matcher to the caller of the pattern matcher.

The following sections show specific translation examples. Firstly, single fragment

asynchronous methods are covered followed by asynchronous multiple fragment Join methods.

Following this, base type parameter passing translation is covered. Finally, an example

program with multiple patterns sharing some of the same fragments is illustrated. For

conciseness only the relevant parts of the translation in the examples is provided.

4.3.2.4.1 Asynchronous Method Example

In the first example program illustrated in Figure 41 a single method with signal return type is

shown. This is the equivalent of the thread1 in our running HelloWorld example. Semantically

the signal return type indicates an asynchronous method. Consequently, in the code it can be

seen that whenever the x method is called the dispatch method wraps the call in a thread and

starts it.

Figure 41. Asynchronous Method Source Code

class Example1 {
 signal x() {
 System.out.println("Example1");
 }
}

Implementation

 91

Selected code from the translation is shown in Figure 42. It can be seen that when the x method

is called the translated code is executed which adds the call to the pattern matcher. This

immediately matches as the pattern has only that fragment in it. Once the call to the pattern

matcher occurs a returnStructure is returned containing the index of the completed pattern.

This is then passed to the dispatcher which then executes the body of the method (named $_x)

in a thread.

Figure 42. Asynchronous Method Translated Code

The pattern matcher is invoked in this code as there may be other patterns that contain this

fragment (eg via using ordered modifier). The code could be optimized to detect the situation

where fragments do not appear elsewhere and do not use the pattern matcher dispatcher to

execute the code. This would speed up the program, as it would no longer need to go to the

pattern matcher to check for a match. However, in the first version of this compiler the

optimizations were kept to a minimum in order to allow for further extensions. A second

performance issue that may be noticed is the superfluous notify call at the end of the translated

method. This is placed in the code for situations where asynchronous methods are completing

patterns that have a waiting synchronous fragment. In this example, the call is unnecessary and

a performance penalty is paid. Even with minimum optimizations, the compiler has acceptable

performance penalties (see Chapter 7).

 void x() {
 if (all$ == null)
 initJoin$();
 join.system.returnStruct retval$ =
 all$.addCall(new java.lang.Object[]{}, 0);
 dispatch$(retval$);
 notifyJoin$();
 }

 void $_x() {
 System.out.println("Example1");
 }

 //from dispatch method
 case 0:
 new java.lang.Thread() {
 public synchronized void run() {
 $_x();
 }
 }.start();
 break;
 …
 return null;

Implementation

 92

4.3.2.4.2 Asynchronous Join Java Method Example

The next translation example is an asynchronous Join method with signal return type. In the

example in Figure 43 a Join method containing two fragments x and y is shown. The meaning

of this is, when a call to both x and y occur run the body of the method asynchronously. The

important portion of the translation for this is presented in Figure 44.

Figure 43. Asynchronous Join Java Pattern Source Code

In this translation two Join fragments can be seen; x and y are translated exactly as the previous

example. However, in this case the method body will not be executed until both Join fragments

are called, at which time the last called asynchronous method will go into dispatch with a

completed pattern identity. The dispatch method wraps the call to the method body in a thread

and starts the thread returning immediately.

Figure 44. Asynchronous Join Java Pattern Translated Code

 void x() {
 if (all$ == null)
 initJoin$();
 join.system.returnStruct retval$ =
 all$.addCall(new java.lang.Object[]{}, 0);
 dispatch$(retval$);
 notifyJoin$();
 }
 void y() {
 if (all$ == null)
 initJoin$();
 join.system.returnStruct retval$ =
 all$.addCall(new java.lang.Object[]{}, 1);
 dispatch$(retval$);
 notifyJoin$();
 }

 void x_$_y() {
 System.out.println("Example2");
 }

 //from dispatch method
 case 0:
 new java.lang.Thread() {
 public synchronized void run() {
 x_$_y();
 }
 }.start();
 break;

class Example2 {
 signal x() & y() {
 System.out.println("Example2");
 }
}

Implementation

 93

4.3.2.4.3 Synchronous Join Java Method Example

One of the most difficult aspects of the translation phase is the handling of fragment parameters

and return values. In Java, there is no convenient way of handling variable parameters and

variable types. In less strictly typed languages one may bypass the type system by taking

liberties with parameter lists by disabling the type recordings (such as C’s void* type). With

Java however, this is not a possibility consequently one must use a combination of casting for

objects and boxing for base types both of which are expensive operations. Neither of these

operations are significantly optimized in the existing JVM (Gosling and McGilton 1996; Sun

1996) in fact boxing is not a supported instruction as it is in more recent virtual machines such

as that used in the Microsoft .Net architecture (Schanzer 2001). In the next two examples,

parameter passing is examined and how it is handled in the Join Java translation. In the first

example, reference type passing is examined.

Figure 45. Synchronous Join Java Source Code

Figure 45 shows an example Join method containing two fragments one of which has a

parameter. There is also a return type of String for the first fragment x. This means the caller to

x is blocked until the entire Join method is completed by a call to y(<string>). Consequently,

as has already been seen in previous examples for the synchronous methods the caller is put into

a wait loop until the call to the asynchronous method arrives. This is demonstrated in Figure

46, which shows the important parts of the translation of the code in Figure 45. The caller of

the asynchronous method will have an immediate return as soon as the call is registered in the

pattern matcher. In the y call, the parameter is stored in an object array and passed to the pattern

matcher. The pattern matcher then stores this argument until a pattern is completed that

involves the y method. The other Join fragment x when it is called will block in the while loop

if there is no y waiting. When a x and y call are both waiting the returnStruct for x will become

ready and contain the completed pattern number (due to the pattern matcher) and the parameter

from y. This returnStruct is then passed to the dispatch method that then calls the method body.

The arguments of the Join fragments are retrieved from the returnStruct via calls to

getObjectArg. The translator then casts the objects to the original reference types.

class Example3 {
 String x() & y(String val) {
 System.out.println("Example3"+val);
 return val;
 }
}

Implementation

 94

Figure 46. Synchronous Join Java Translated Code

4.3.2.4.4 Base Type Parameter Example

Whilst reference types in the previous section can all be stored as an Object irrelevant of the

specific type (as they are all sub-classes of Object) base types pose an interesting problem in

translation. There is no way of referring to all the different base types as a single type.

Consequently, in the translation, boxing of base types must be done otherwise each type must

be separately handled throughout the code. This exercise unfortunately becomes expensive in

runtime if there is no support for boxing at the byte code level. Boxing requires boxing objects

to be created for every base type. This defeats the reason for having base types (an efficiency

concern) in the language (Gosling and McGilton 1996). In a final version of the compiler, it

would be possible to implement separate code for each of the base types handling each one

separately. This is not wise in a prototyping version though as one would need to change seven

different segments of code for every minor change to the extension specification. In Figure 47,

 void y(String val) {
 if (all$ == null)
 initJoin$();
 join.system.returnStruct retval$ =
 all$.addCall(new java.lang.Object[]{val}, 1);
 dispatch$(retval$);
 notifyJoin$();
 }

 String x() {
 if (all$ == null)
 initJoin$();
 join.system.returnStruct retval$ =
 all$.addSynchCall(new java.lang.Object[]{}, 0, this);
 while (retval$.ready != true) {
 try {
 synchronized (all$) {
 all$.wait();
 }
 } catch (java.lang.InterruptedException ex) {
 throw new
 join.system.joinTranslatorException("…");
 }
 }
 return (String)dispatch$(retval$);
 }

 String x_$_y(String val) {
 System.out.println("Example3" + val);
 return val;
 }

 //From dispatch method
 case 0:
 return x_$_y((java.lang.String)retStruct.getObjectArg(1, 0));

Implementation

 95

an example Join Java program is shown that makes use of base types for both a parameter and a

return type. Figure 48 shows the relevant code that is different between the base type versions

and previous code examples. You can see when the method is called the integer argument is

boxed in the Java wrapper class for storage in the pattern matcher. The boxed Integer is then

treated just like the Objects in the previous examples. For the return value when the dispatch

method is executed the return value is boxed in the wrapper class and returned back to the caller

of dispatch. The caller then unboxes the return value and returns it to the caller of the

synchronous Join fragment.

Figure 47. Base Type Join Java Source Code

4.3.2.4.5 Shared Fragment Example

The last example in the translation part of this chapter to be covered is the repeated fragment

translation. In this example (presented below in Figure 49) the Join fragment y(<int>) is used

in two Join methods. Consequently, it is interesting to see how this affects the translation. This

is shown in Figure 49.

In the example, the translated methods are not shown, as the methods are identical to the

previous examples. The interesting feature of this translation is in the initJoin method and the

dispatch method. In the initJoin method in Figure 50 the situation where there are three Join

fragments x, y(<int>) and z. They are identified as 0, 1 and 2 respectively. In the addPattern

method calls you see the first Join method x() & y(<int>) is entered as 0,1. The second pattern

z() & y(<int>) is entered as 2,1. This shows a situation where a Join fragment is used within

two Join methods. The second interesting translation is the dispatch method where the dispatch

method now has two possible Join methods to call. It can be seen that there is a choice between

which two method bodies to execute depending on what Join method is chosen by the pattern

matcher.

ordered class Example4 {
 int x() & y(int val) {
 System.out.println("Example3");
 return val;
 }
}

Implementation

 96

Figure 48. Base Type Join Java Translated Code

Figure 49. Repeated Join Fragment Usage Source Code

 void y(int val) {
 if (all$ == null)
 initJoin$();
 join.system.returnStruct retval$ =
 all$.addCall(new java.lang.Object[]{
 new java.lang.Integer(val)}, 1);
 dispatch$(retval$);
 notifyJoin$();
 }

 int z() {
 if (all$ == null)
 initJoin$();
 join.system.returnStruct retval$ =
 all$.addSynchCall(new java.lang.Object[]{}, 2, this);
 while (retval$.ready != true) {
 try {
 synchronized (all$) {
 all$.wait();
 }
 } catch (java.lang.InterruptedException ex) {
 throw new join.system.joinTranslatorException("…");
 }
 }
 return ((java.lang.Integer)dispatch$(retval$)).intValue();
 }

 int z_$_y(int val) {
 System.out.println("P1");
 return val;
 }

 //from dispatch method
 case 0:
 return new
 java.lang.Integer(x_$_y(retStruct.getIntArg(1, 0)));

class Example5 {
 int x() & y(int val) {
 System.out.println("P0");
 return val;
 }
 int z() & y(int val) {
 System.out.println("P1");
 return val;
 }
}

Implementation

 97

Figure 50. Repeated Join Fragment Usage Translated Code

4.3.2.5 Silent Semantic Analyses

After the translation phase is complete, an incomplete attribution of the abstract syntax tree is

available. A silent semantic analyser is required to finish attribution of the tree. At the end of

the silent semantic phase, the abstract syntax tree will contain a valid Java program. In the base

compiler, the semantic analyser is the last phase of the front end. The extensible compiler will

run a silent semantic analyser over the Java abstract syntax tree using the base language rules.

This will make sure the translation from the extension language to the base language is correct.

It is also necessary in this phase to attribute the newly translated sections of the abstract syntax

tree. Once this phase is complete, the abstract syntax tree will contain a semantically correct

Java attributed abstract syntax tree.

 synchronized void initJoin$() {
 if (all$!= null)
 return;
 join.system.joinPatterns alllocal$ =
 new join.system.joinPatterns(this);
 alllocal$.setOrdered(false);
 alllocal$.addPattern(new int[]{0, 1}, true);
 alllocal$.addPattern(new int[]{2, 1}, true);
 alllocal$.noMorePatterns();
 all$ = alllocal$;
 }
 public java.lang.Object dispatch$(final returnStruct retStruct)
 throws join.system.joinTranslatorException {
 switch (retStruct.patternCompleted) {
 case 0:
 return new java.lang.Integer(
 x_$_y(retStruct.getIntArg(1, 0)));
 case 1:
 return new java.lang.Integer(
 z_$_y(retStruct.getIntArg(1, 0)));
 case -1:
 break;/* inserted for safety */
 default:
 throw new join.system.joinTranslatorException("…");
 }
 return null;
 }

Implementation

 98

4.4 Pattern Matcher

The second major component of the Join Java extension is the pattern matcher. The objective

of the pattern matcher is to implement the synchronization and dynamic channel formation

semantics of the Join calculus in the language. The pattern matcher forms the core of the

runtime system. The pattern matcher is used at runtime to decide which Join calls are matched

together to execute Join method bodies. The pattern matcher is in the form of a library that

integrates closely to the compiled code from the Join Java compiler.

4.4.1 Application Programmer Interface for the Pattern Matcher

In this section, the interface between the compiler and its run time system is described. The

Join Java extension for the compiler resolves to Java bytecode but this is not sufficient to

support the execution of Join Java programs. The language in fact makes use of a runtime

system that handles the decision of what Join methods to execute at runtime. There are a

number of different ways one could have approached to implement the pattern matcher. One

option, extending the Java virtual machine, with new bytecode to support Join method

matching. However, this means a special Java virtual machine(Gagnon 2002) would have had

to be created. The second option was to generate pattern-matching code within the Join Java

compiler. Whilst this is a superior implementation for performance and compactness of code,

this method was not used because it slows the prototyping of alternate compilation strategies.

Rather a runtime library was written in standard Java. This allows the pattern matcher to be

easily changed for experimentation. Another design decision that needed to be made is whether

to use a threaded or unthreaded model. With an unthreaded model for the pattern matcher, the

processing of the arriving fragment is done in the runtime of the caller. If the pattern matcher

were a separate thread it would have to be notified immediately, when any fragment was called.

There is no guarantee that a further thread would not pre-empt the pattern matcher, delaying

fulfilment of the completed pattern. Therefore, for simplicity the non-threaded event driven

approach was selected.

The pattern matcher has two phases. In the initialization phase, the compiler passes a list of all

the patterns to the pattern matcher. It also passes behaviour requests to the pattern matcher (see

ordered modifier). When the compiler has completed passing patterns, it then signals the

pattern matcher that it has finished setting patterns. The second phase, the operational phase

accepts Join fragment calls and evaluates if there are any completed Join methods.

Implementation

 99

Each Join fragment call provides only partial information for the construction of a channel. It is

the roll of the pattern matcher to assemble the fragments to form completed Join methods. The

pattern matcher itself does not perform any operations on the data at the inputs of the channels.

The pattern matcher is completely abstracted from the rest of the program. It simply acts as a

mechanism for matching Join fragments to Join methods. It does not contain anything other

than the identities of the fragments, the patterns and a mechanism to associate waiting

arguments to the call. Thus, the pattern matcher can be viewed as an event based scheduler

responding to the arrival of fragments/events associated with the Join methods. Another way of

viewing the pattern matcher is a mechanism for marshalling the parameters required for the

body of each Join method.

When the pattern matcher is asked to process a new Join fragment it is clear that there may be

zero, one or more possible patterns that will be completed by the fragment (see Figure 49). For

example, X and Z Join fragments have been called and a call to the Y Join fragment arrives for

the following patterns X&Y and Z&Y. At the high level, there is no guidance at what the pattern

matcher should do in this situation. Two possibilities here you either define the priority of

matching, for example the order the Join methods were defined in the class or patterns with

shorter lists of fragments are selected first. Alternatively, the pattern matcher may make a non-

deterministic choice.

The pattern matcher implements a search operation. Therefore, it will always take some finite

time to find a match. The speed of the search is dependent on the number of patterns and the

number of fragments in each pattern. Some optimizations such as branch and bound pruning

can possibly reduce this search time. The speed is also dependent on the data-structures and

implementation of the algorithms. An important practical characteristic of the pattern matcher

is graceful degradation of performance. That is, the pattern matcher performance should

degrade proportionally to the number of patterns and fragments. However, some optimizations

tend to reduce this predictability. It is important that the pattern matcher take the same amount

of time for each pattern match otherwise, program performance will be erratic. This will then

lead to programs that have seemingly random delays. As will be explained later, the linear

search time implementations usually imply a fixed limit on the number and complexity of

patterns that can be registered due to the processing overhead. The need for the pattern matcher

to maintain state information about the callers of the blocking methods makes the search

problem somewhat unusual requiring an especially constructed solution.

Implementation

 100

In the remainder of this section firstly, the API for the pattern matcher is described; this is the

method calls and data structures expected by the translated Join Java code. Finally, different

implementations of the pattern matcher are described.

4.4.1.1 joinMatcher class

This runtime library is encapsulated in a class called joinMatcher that provides a number of

methods for the compiled Join class to call at runtime. This handles the pattern matching

semantics between Join methods. A typical method is addPattern, which defines a specific Join

method to the pattern matcher. The present version of the compiler creates one pattern matcher

per instance of a class that contains Join methods.

Table 5 shows a summary of the most important methods and where they relate to the process

of pattern matching. In the table, methods from both the initialization and operation phases are

shown. The most important method call of the initialization phase is the addPattern method.

This method takes a list of integer values that represent the identities of the fragments. Once all

the methods are added, the noMorePatterns lets the pattern matcher know that it can start

optimizing for the specific combination of patterns.

In the second phase (the operation phase), there are two methods, addCall which is called by

asynchronous Join fragments and addSyncCall which is called by synchronous Join fragments.

Inside the pattern matcher, these methods store the parameters for the current call then check

with the pattern matcher to see if any Join methods are now complete. If a Join method is

complete then the appropriate return structures are modified. That is each return structure of

each fragment of the completed Join method is modified. All of these return structures are set

to be ready. The completed pattern is set to -1 on all the return structures except for one, which

is called the primary return structure. The primary return structure is set to the correct

completed Join method identity and the parameters from all the return structures are moved into

it. The choice of which fragment to use as the primary return structure depends on whether the

Join method is synchronous or not. If the completed Join method is synchronous, the primary

return structure is the first fragment of the pattern that is the fragment that is in likelihood

blocking its caller. If the completed Join method is asynchronous then the last call that resulted

in the completion is used. The -1’s on the other lead to the dispatch methods aborting in all the

other fragment cases.

Implementation

 101

Summary of Pattern Matcher (joinPatterns)
Initialization Phase
constructor Argument: JoinInterface

Creates the pattern matcher
setOrdered Arguments: boolean true or false depending on the reduction policy

Tells the pattern matcher whether to use non-deterministic
reduction or to use the order of the definitions as the deciding
factor.

addPattern Arguments: int array containing fragment identities
 boolean true or false representing synchronous status
Add a Join method signature into the pattern matcher. The first
argument is a list of fragment identities. The second argument
contains a boolean flag indicating the synchronicity of the Join
method.

noMorePatterns Arguments: None
This method simply tells the pattern matcher that all the Join
method signatures have been entered. The Join pattern matcher can
then finalize its internal data structures. This is also the time that
the pattern matcher can optimize.

Operational Phase
addCall Arguments:Object array containing fragment arguments

 int fragment the fragment identity
At runtime whenever an asynchronous Join fragment call occurs
this method is called. The first argument transports the boxed
versions of the parameters the second parameter contains the
identity of the fragment. This method must be synchronized.

addSynchCall Arguments: Object array containing fragment arguments
 int fragment the fragment identity that caused the call
At runtime whenever an synchronous Join fragment call occurs this
method is called. The first argument transports the boxed versions
of the parameters the second parameter contains the identity of the
fragment. This method must be synchronized.
Table 5. Pattern Matcher API Summary

4.4.1.2 JoinInterface Interface

The Join interface is implemented by all Join classes in order to allow a call back from the

pattern matcher to the Join Java class. This allows the pattern matcher to reawaken a waiting

thread when an asynchronous Join method is complete. This interface is illustrated in Table 6.

Summary of Join Interface (JoinInterface)
notifyJoin$ Method will make a synchronized call to notifyAll in order to wake

up any threads waiting on the Join Classes monitor.
Table 6. Join Interface API Summary

Implementation

 102

4.4.1.3 returnStruct class

The returnStruct class acts as the storage mechanism for arguments along with a mechanism of

returning the status of the fragment to the Join class. The class is illustrated in Table 7. The

return structure consists mostly of unboxing methods that unwrap the arguments from their

boxed versions stored in the argument lists. The dispatch method makes use of the

patternCompleted field to figure out which Join method has been completed. The

patternCompleted field can have a number of values including -1 indicating a Join method has

been completed but is handled elsewhere or 0 indicating no completion and finally a positive

integer representing the completed pattern. The ready field is used by the translated method in

the Join Java class’s wait loop.

Summary of Return Structure (returnStruct)
patternCompleted (field) Stores the identity of the completed pattern. Stores -1 if the pattern

is completed by another return structure. Stores 0 while there is no
pattern completed.

ready (field) Stores the status of the fragment. If the fragment is part of a
completed pattern it will become true.

Unboxing Methods
getIntArg,getBooleanArg,
getByteArg,getShortArg,
getLongArg,getFloatArg,
getDoubleArg,

Arguments: int argument number.
Unboxing methods for the base types and the reference types. The
parameter tells the return structure which parameter to return.

Table 7. Return Structure API Summary

4.4.1.4 JoinTranslatedException class

The final public class in the Join Java pattern matcher package is the Join translator exception

class. This is used internally by the compiler to indicate translation and pattern matching errors.

Exceptions can then be caught either inside the translated code or inside the pattern matcher for

debugging.

4.4.2 Approaches to Pattern Matching

There are a number of approaches that can be taken in constructing a pattern matcher to achieve

the semantics of the Join calculus. The simple approach to building a Join Java pattern matcher

is to record the status of the waiting calls followed by a list of all possible reductions that are

compared against the current state of the waiting calls. However, this approach breaks down, as

search is quadratic on every call to the pattern matcher. The original Join language (Maranget

and Fessant 1998) used a state machine where states are used to represent the possible patterns.

However, state space explosion was a problem and they used state space pruning and heuristics

Implementation

 103

to trim the state space down. The second version of their language used a bit field to represent

the status of the pattern matching. Each pattern reduction was compared with the current state

of the calls via an XOR call. Whilst these approaches sped up pattern matching the solutions

were not scalable beyond the predefined maximum size of the bit-field. The state space

implementation consumed a lot of memory and the bit field solution was limited on the upper

end by the max number of digits that could be represented and hence Join fragments the type

could store. Two alternative ways of describing the data-structure are described below.

• Representative/ Structural. (bitmaps). A representative/structural solution usually is a

direct encoding of the problem such as the naive solution presented previously or the

bitmap solution from Maranget.

• State Space. (state machine). State space solutions try to represent all possible

situations the pattern can be in and then navigate between them when Join fragment

calls occur.

4.4.2.1 Tree Structured Implementation

In the pattern matcher for Join Java, a middle ground between the space complexity of a state-

based solution and the time complexity of a linear solution was sort. One approach was by

using a tree structure to represent the static structure of the patterns of a Join class. The idea of

the approach is to limit the search space during the runtime of the program. The data-structure

is consequently designed with the idea of a localized search in mind. In the data-structure,

interior nodes represent patterns and leaves represent Join fragments. The root acts as an index

to both leaves and interior nodes for fast access. In Figure 51, an example with three Join

methods and six fragments is shown. The most interesting fragment is B as it is shared by two

patterns A&B and B&C&D. This design allows us to trade the space against matching time.

However, the search time is further optimized by only checking the part of the tree that is

directly affected by the occurrence of the Join method fragment call. Using the example from

the figure when a C is called only B&C&D is checked for completion. If B is called both A&B

and B&C&D are checked for completions. This is achieved by connecting the leaves to

multiple interior nodes so that when a fragment arrives it is quick to check if that new fragment

completes any Join methods. In the pattern matcher a list of all fragments are stored in the root

of the node so that when a call arrives the correct location in the tree can be immediately

accessed without the need to traverse the data-structure. In this way, the pattern matching

process can be optimized to search only the part of the tree that contains patterns affected by the

Implementation

 104

arrival of the new fragment. That is if a Join method call occurs it only checks patterns that

contain that Join method fragment.

The Join calculus has a non-deterministic matching semantic on reduction of rules. However as

related earlier, in the pattern matcher the semantics to support deterministic reduction have been

extended. This is done via the ordered modifier. When the pattern matcher is in deterministic

reduction mode it will match all possible patterns in the pool rather than the first randomly

selected match. The pattern matcher will then choose which pattern to complete based upon the

order in which they were defined in the Join class. The worst-case scenario for this pattern

matcher is if a Join fragment occurs in every Join method. This will lead to every pattern being

searched. This would make the algorithm O(mk) complexity (where m is the number of Join

methods and k is the number of other Join fragments involved in the methods). This is not

likely to happen as normally Join method fragments have locality. In other words, most Join

fragments only take part in a few Join methods.

Figure 51. Internal Representation of Tree Pattern Matcher

Implementation

 105

4.4.2.2 Pre-calculated Table Lookup Implementation

The second major pattern matcher that was developed was designed to optimize the speed of

execution for a limited number of fragments. This pattern matcher pre-calculated every

possible state that the pattern matcher could exist in and in the event of a change in the state

space would immediately know the appropriate pattern to execute. The state of the pattern

matcher is expressed as a series of bits used to represent an integer value. This integer value

gives a position in the pre-calculated array that resolves to a completed pattern. The array is

thus expressed, as a linear array with a magnitude of 2n where n is the number of fragments in

the Join class. The state of the pattern matcher at any point in time can be expressed as a

sequence of bits indicating the presence or absence of a particular fragment. For example, a

Join class containing five fragments (a through e), there are 32 possible states 00000 through to

11111. If there was an a and a c waiting the bit-field would be 10100. The design of the pre-

calculated pattern matcher is illustrated in Figure 52. In the event that more than one fragment

Figure 52. Pre-calculated Pattern Matcher

Implementation

 106

is waiting the bit field will still only be 1. Therefore 1 represents some (one or more) fragments

waiting in the pattern matcher and 0 means no fragments waiting in the pattern matcher.

Because the state can be converted into an index via trivial bit manipulation, retrieval of

completed patterns is performed quickly. When initialization occurs (in the prototype when the

first fragment is called), the pattern matcher calculates all possible states the pattern matcher

could be in and calculates the resultant completed patterns from those states.

The major advantage of this approach is that the pattern matcher design has a O(1) delay when

retrieving completed patterns. This is because after the pre-calculation of states is done no

searching needs to be performed during runtime. The state of the pattern matcher is stored as a

position in the pre-calculated array. Consequently, the time fluctuations other matching

algorithms suffer from are removed.

This pattern matcher has two disadvantages. Firstly, In the event of a large number of

fragments the pre-calculation period takes an increasingly long time to populate the array.

However, if this is done at compile time there will be no penalty. The second disadvantage is

the memory footprint of the pattern matcher is relatively large compared to other

implementations. The number of fragments that can be handled by the pattern matcher is

limited by the memory that can be allocated to the pre-calculated array. Benchmarking (see

section 7.2) of the pattern matcher has indicated that performance is adequate in the majority of

cases. Various optimizations could be created to improve the overheads of this pattern matcher

design. For example, some form of caching strategy could be used to improve the pattern

matching speed.

4.4.2.3 Optimizations

The previous section has described the two new approaches to implementation of a Join pattern

matcher with their limitations. It is possible to reduce the penalty paid for the particular

implementation by making optimizations that can either improve performance or improve

memory usage.

Using Symmetry in Representative Pattern Matching

To improve the capacity of the representative and state space solutions a number of heuristics

are possible. For example in the bitmap solutions, it would be possible to improve the

(Maranget and Fessant 1998) approach by using symmetry to reduce the size and number of

patterns. This could be achieved by making generic version of some patterns if they look

Implementation

 107

similar to each other. For example in Figure 53 two patterns reduce to expression1 and

expression2

Figure 53. Symmetry before Example

Both these reductions are similar patterns the only difference being that the call to C or call to B

defines which reduction is executed in the end. A new pattern fragment call X could be

introduced which means either B or C and then generate the reduction in Figure 54. A decision

(linearly) which expression to execute after the pattern match is complete must be then be

made. Of course, this solution only reduces the size of the problem but does not eliminate it.

Figure 54. Symmetry after Example

State Space Pruning

Another approach similar to the symmetry optimization is the idea of pruning the state space.

In the previous section, some state based solutions were examined. The state based solutions

are straightforward methods of representing the pattern-matching problem however; these

approaches are limited because of the problems involved in state space explosion. These

problems could be reduced by using storage heuristics. For example in the (Maranget and

Fessant 1998) state based solution, the author reduces state space explosion by collapsing some

of the state space into states that represent several possible states. This reduces the memory

footprint the state space has fewer nodes to search and hence increases the size of the real

search space for little cost.

Limited Search in a State Space.

In the tree based Join Java pattern matcher a representational structure for the patterns is used.

That is state is not maintained for every possible situation instead a representation is maintained

for possible complete patterns. In this way, the solution space is small. Unfortunately,

whenever a method call occurs it needs to check for the occurrence of a completed pattern.

State space explosion is traded for a slightly longer matching time. However, representative

structure can be further optimized by only checking the part of the structure that is directly

affected by the occurrence of the Join method fragment call. That is if a Join method call

occurs it only checks patterns that contain the Join method fragment.

A&X -> e1 | e2

A&B -> e1
A&C -> e2

Implementation

 108

4.4.3 Summary

In every implementation based on the Join calculus the critical factor to the performance of the

language will be the pattern matcher. Whilst designing the various pattern matchers it was

concluded that no single pattern matcher could ever efficiently solve all possible configurations

of patterns and fragments. To this end, considerable effort was spent on this component of the

compiler looking for novel solutions in order to increase the speed without compromising

scalability, speed or memory size. This has proved challenging but it was felt that the prototype

pattern matchers were a good start in this direction.

Implementation

 109

4.5 Issues Identified in the Prototype

When creating this extension a number of non-intuitive issues were encountered. The two main

issues were firstly, implementation of multi-directional channels and secondly, the association

of locks to parameters. These two issues are now described in more detail.

4.5.1 Multi-Directional Channels

The construction of the Join calculus implies the possibility of multi-directional channels. That

is a messages can be passed two ways. An example of what a multi-directional program would

look like is supplied in Figure 55. It can be seen that in this program the Join method has more

than one synchronous Join fragment. This means that more than one method will be blocked

waiting on a successful completion of a Join method. When there are calls to both A(int x) and

B(int y) the Join method executes the Join method body returning the parameter y to A and x to

B. This means that parameter y is passed from the caller of B to the caller of A. Conversely the

parameter x is passed from the caller of A to the caller of B. This channel formation would

make some of the more awkward pattern implementations (see Chapter 5) a lot more succinct.

Whilst it is possible to implement a multi-directional channel construct there are a large number

of issues that become apparent. Firstly, the pattern matcher becomes a lot more complicated

and hence slower as it needs to record more than one returnee for each pattern. The

synchronous callers must also be blocked and one allowed to proceed into the method body. If

all the threads are let into the method body a number or synchronization problems would occur.

For example, the decision of which caller to actually do the processing needs to be decided.

Presumably this would be the last caller to depart the Join method body. As each return

statement is reached the runtime would have to pass the return value to the named blocked

synchronous method before allowing it to continue. Secondly, the cognitive load to the

programmer is higher as they now have to deal with multiple exit points for different threads in

Figure 55. Example Multi-Directional Program

final class MultiDirectionalChannelExample {
 int A(int x) & int B(int y) {
 //code that callers to A() and B() want to execute

 return y to A(int);//this returns control to A();

 //some more code that the caller to B() want to execute
 return x to B(int);//this returns control to B();
 }
}

Implementation

 110

a method. It is possible to simulate multi-directional with uni-directional channels, which

reduces the necessity to implement them. For these reasons, multi-directional channels were

not implemented.

4.5.2 Lock Parameter Association

A second subtle issue when implementing the Join Java extension is the association of locks

with parameters. When a synchronous caller is blocked the parameters it passes via the Join

fragment call must take part in the Join method body. An example program is shown in Figure

56. The program shows a situation where two threads (thread1 and thread2) are calling a Join

fragment that passes in a single integer value (param). The value is returned to the caller as

soon as a call to B is randomly generated by the thread3 method. If locks were not associated to

the parameters in this example it would be possible that thread1 might print a 6 as the wrong

lock is released. This issue is only a problem if a synchronous method has parameters and a

return type other than void.

Figure 56. Lock Parameter Association Example Code

final class LockAssociationExample {
 signal thread1(){
 System.out.println(“result = “+A(3));
 }

 signal thread2() {
 System.out.println(“result = “+A(6));
 }

 int A(int param) & B() {
 return param;
 }

 signal thread3() {
 //a loop that randomly emits calls to B();
 }
}

Implementation

 111

4.6 Conclusion

This chapter demonstrated the feasibility of implementing the Join Java extension in Java.

Whilst investigating the implementation of the prototype language a number of interesting

discoveries were made. Each point is covered below;

1. Even though the Join calculus implies multi-directional channels, they were not

implemented due to two factors. Firstly, the difficulty of implementing the return-to

construct from the calculus. This would involve implementing a method of generating

some form of asynchronous return in which different callers could depart the method

body at different times. Secondly, there is also the problem that programmers would not

be used to the idea of multiple exits from a method body by different fragments. This is

described in section 4.5.1.

2. In Join Java, it was necessary to allow base types to be passed as parameters for Join

fragments. Unfortunately, by passing the parameters it was found that the pattern

matcher had to store a number of different types. This also meant that processing in the

translated code for the parameters must handle all the base types plus the object type.

The only practical solution to this problem that maintains the prototypes ability to be

modified easily was to use a boxing technique. Boxing means that when the parameters

are passed into the pattern matcher they are wrapped in a holder class that in turn is

manipulated by the pattern matcher parameter storage mechanism. This allows the

same code to be used to manipulate all the base types and the object type. The

unfortunate side affect of this approach is to slow down the method calls for methods

containing base types due to the boxing and unboxing operations. If the Java virtual

machine supported boxing and unboxing like that of later languages11 this overhead

could be minimized.

3. An important issue with pattern matching is ensuring that the arguments of a

synchronous Join fragment are used in the method body that returns to the Join

fragments caller. That is in the pattern matcher, arguments need to be associated with

synchronous fragments locks. When a parameterized synchronous Join method call

occurs, the caller is blocked until the Join method fragment completes. When a

completion occurs, the parameters must be passed into the body of the Join method. If

11 Microsoft’s .Net framework provides optimizations for boxing and unboxing.

Implementation

 112

that Join method then returns a value then the value must be returned to the caller that

was blocked. If this association of lock to the parameters of the Join method calls is not

stored, results that do not relate to the parameters could be returned. This simple

requirement complicated both the pattern matcher and the compiler implementations.

This was described in more detail in section 4.5.2.

4. A choice that was faced writing the compiler was whether to use a generated pattern

matcher or a generic pre-written pattern matcher. A generated pattern matcher will be

faster as it can be optimized to the particular patterns in the Join class. However, the

compiler itself will be more difficult to extend or modify. If a generic pattern matcher

was used that is the same for all Join Java classes the pattern matcher could be changed

at will to experiment with different optimizations. It also allows the compiler to be

modified more easily.

This chapter has explored the implementation of the Join Java language extension. In the next

chapter, a range of typical concurrent programming examples coded in Join Java language are

provided.

113

5

Design Patterns

There are two ways of constructing a software design. One way is to make it
so simple that there are obviously no deficiencies. And the other way is to
make it so complicated that there are no obvious deficiencies.

(Charles Hoare)

Table of Contents

5.1 INTRODUCTION 114
5.2 PATTERNS FOR SYNCHRONIZATION 115
5.3 PATTERNS FOR CONCURRENCY 125
5.4 SIMPLE CONCURRENCY MECHANISMS 136
5.5 CONCLUSION 155

Design Patterns

 114

5.1 Introduction

In this chapter, the Join Java implementations of a number of common patterns in concurrency

are examined. The first section describes design patterns relating to synchronization such as

scoped locking, strategized locking, thread safe interfaces and double check locking

optimization. The second section examines patterns that deal more with representation of

concurrency such as, active objects, monitor objects, half-sync/half-async, leader/follower and

thread specific storage. The final section examines a number of simple concurrency

mechanisms that are commonly seen in concurrent applications, for example semaphores,

timeouts, channels, producer/consumer, bounded buffer, reader writers and thread pools. Each

of these patterns is implemented in both Join Java and Java. For each pattern, each approach is

explained and there is some discussion on how they differ. It is necessary to show that Join

Java is complete enough to express all patterns. However, in very few cases the Join Java

expression of the pattern was shown to be longer than the Java solution. The implementations

in this chapter will form a basis of comparison of both execution time and code length for

Chapter 7.

Design Patterns

 115

5.2 Patterns for Synchronization
In this section all the design patterns for synchronization presented in (Schmidt 2000) are

examined12. All the patterns presented in chapter four of the text are covered. In a practical

sense, not all patterns presented here should be used in a real world situation. For instance, the

monitor locking pattern is better implemented using the low-level monitor operations of Java.

However, to prove the expressiveness of Join Java all the concurrency patterns are converted to

Join Java.

The first pattern covered in this section is scoped locking. This pattern closely couples the

locking mechanism to the scoping of a section of code allowing automatic acquisition and

relinquishment of the locks. The second pattern is strategized locking that parameterises the

locking mechanism in order to allow the manipulation of synchronization strategies in a first

class manner. The third pattern is the thread-safe interface, which acts as a wrapper to

unsynchronized code providing a totally separate mechanism for synchronization to that of the

execution of the code. The final pattern covered in this section is the double-checked locking

optimization which introduces a precheck in order to avoid repeated checking of locks with

their related slowdowns. It should be noted that some patterns are not necessary in this

language as the behaviour they present to the programmer are already integral to the Join Java

language. For example the leader/followers pattern is implicit in the structure of the language

as waiting Join method calls can represent waiting threads. The equivalent code in Join Java is

shown for completeness and to show that the language is expressive enough to represent all the

patterns presented by Schmidt (op cit).

5.2.1 Scoped Locking
The purpose of the scoped locking idiom is to make sure a critical section or method acquires a

lock on entry and releases the lock on exit. The method of doing this is to create a class in

which the constructor switches a lock on and the classes’ destructor switches the lock off. A

primary disadvantage of Java is that there is no real destructor method in the language due to

the garbage collector. Java does provide finalizer methods. However, there is no guarantee that

these finalizers will be executed when an object leaves scope. Consequently, the

implementation of this pattern is impossible to achieve in a reliable manner.

12 The thread specific storage pattern was not implemented because it avoids the problem of locking by duplicating data structures.

Design Patterns

 116

There is one work around to this problem as illustrated in Figure 57. Exception handling is

used to ensure that a lock is released when a method body goes out of scope. This can be

achieved using the finally clause for exceptions. Inside the finally clause (as you would

normally do in the destructor) the lock is released. The Join method below simply acts as the

locking mechanism. When the autoLockingMethod method calls the lock fragment it is blocked

until an unlock fragment is called. In future when this pattern is used in future examples the

finally code will be omitted for brevity.

The standard Java language provides this pattern via the modifiers of the method. The

synchronized modifier acts to make the entire method synchronized (see Figure 58).

Consequently, when this pattern is desired in a Java program its best to use the synchronized

keyword due to its simplicity.

5.2.2 Strategized Locking
The strategized locking paradigm abstracts the synchronization mechanism from the code on

which it operates. In different environments, different synchronization strategies may be

needed. Consequently, what is needed is to replace the synchronization mechanism with a

specific one for the purpose in mind. This implies the interface defines the Join fragments but

Figure 57. Join Java Scoped Locking Implementation

Figure 58. Java Scoped Locking Implementation

class Scoped {
 synchronized void autoLockingMethod() {
 //some protected code
 }
}

class Scoped {
 Scoped() {
 unlock();
 }
 synchronized void autoLockingMethod() {
 try {
 lock();
 System.out.println("Start Safe");
 System.out.println("End Safe");
 } finally {
 unlock();
 }
 }
 void lock() & unlock() {}
}

Design Patterns

 117

not the Join methods. Various implementations of the interface are then written. In this way,

one can arbitrarily replace synchronization behaviours both at runtime and compile time.

Figure 59 and Figure 60, show how to replace synchronization behaviours at runtime. The

example is a simple traffic light system that changes its behaviour at night. In the daytime, the

lights just alternate back and forward. At nighttime they use a sensor to detect when traffic is

waiting on EW route and let them through else let NS traffic through. Firstly, the interface

called AbstractSynchronizer is defined which describes two method headers goNS and goEW.

Two implementation classes are then written with their respective behaviours. Finally, a traffic

light control system is written which runs traffic lights using either the day or night behaviours.

The control system has two threads one for each direction of traffic. Each thread takes a

parameter that is the synchronizer. The most important part of the example to note is the main

method where different synchronizers are being created dynamically. This is so that

synchronization scheme can be changed at runtime altering the behaviour of the interaction

between the two threads.

In Figure 61, Figure 62 and Figure 63 the equivalent Java code is presented. In the example, the

closest possible code for comparison is generated. Consequently, the interface and the main

method are identical to the Join Java version. The class NightTimeSynchronizer in the Java

program is simpler than the Join Java one as you can make use of the object’s monitor to

simulate the sensor. However, the alternative implementation DayTimeSynchronizer which

uses two locks does need to use additional checks and mechanisms to protect the locks. This

becomes more complicated than the Join Java equivalent as the checking and setting must be

implemented. An alternative implementation to this would be to use a single Boolean flag and

alternate between each of the two lights. However, this code would be less readable and still

does not solve the problem as it is scaled up to more lights in the intersection. This example

shows that whilst the monitor approach is good for the simpler problems when it is scaled up to

more complicated interactions the mechanism breaks down. This makes the code more prone to

errors as it becomes more complicated and hard to read.

Design Patterns

 118

Figure 59. Join Java Strategized Locking Library Code

interface AbstractSynchronizer {
 public void goNS();
 public void goEW();
}
//Alternate cars through the intersection
class DayTimeSynchronizer implements AbstractSynchronizer {
 public DayTimeSynchronizer() {
 NS();
 }

 public void goNS() & NS() {
 System.out.println("Car Goes NS Daytime");
 //some delay
 EW();
 }
 public void goEW() & EW() {
 System.out.println("Car Goes EW Daytime");
 //some delay
 NS();
 }
}

//Allow cars from either direction if the hit the sensor (x)
ordered class NightTimeSynchronizer implements AbstractSynchronizer {
 public NightTimeSynchronizer() {
 x();
 }

 synchronized public void goEW() & x() {
 System.out.println("Car Goes EW Nighttime");
 x();
 }

 synchronized public void goNS() {
 System.out.println("Car Goes NS Nighttime");
 }
}

Design Patterns

 119

Figure 60. Join Java Strategized Locking User Code

Figure 61. Java Strategized Locking Implementation Code

class TrafficLights {
 signal t1(AbstractSynchronizer sync) {
 System.out.println("Starting EW Cars");
 for (int i=0;i<4;i++) {
 sync.goEW();
 }
 System.out.println("Ending EW Cars");
 }

 signal t2(AbstractSynchronizer sync) {
 System.out.println("Starting NS Cars");
 for (int i=0;i<4;i++) {
 sync.goNS();
 }
 System.out.println("Ending NS Cars");
 }

 public static void main(String[] argv) {
 System.out.println("Test");

 TrafficLights lights= new TrafficLights();

 AbstractSynchronizer day = new DayTimeSynchronizer();
 lights.t1(day);
 lights.t2(day);

 AbstractSynchronizer night = new NightTimeSynchronizer();
 lights.t1(night);
 lights.t2(night);

 }
}

//this behaviour gives preference to the intersection with cars
//road only allowing
//traffic when the sensor (X) is tripped

class NightTimeSynchronizer implements AbstractSynchronizer {
 public NightTimeSynchronizer() {
 }

 //we can use the objects monitor as the sensor result
 synchronized public void goEW() {
 System.out.println("Car Goes EW Nighttime");
 }

 synchronized public void goNS() {
 System.out.println("Car Goes NS Nighttime");
 }
}

Design Patterns

 120

Figure 62. Java Strategized Locking Implementation Code

interface AbstractSynchronizer {
 public void goNS();
 public void goEW();
}

class DayTimeSynchronizer implements AbstractSynchronizer {
 boolean NS=false;
 boolean EW=false;
 public DayTimeSynchronizer() {
 NS=true;
 }

 public synchronized void goNS() {
 while (!NS) {
 try{
 wait();
 } catch(InterruptedException ex) {/*report error*/}
 }
 System.out.println("Car Goes NS Daytime");
 //some delay
 NS=false;
 EW=true;
 notify();
 }

 public synchronized void goEW() {
 while(!EW) {
 try{
 wait();
 } catch(InterruptedException ex) {/*report error*/}
 }
 System.out.println("Car Goes EW Daytime");
 //some delay
 EW=false;
 NS=true;
 notify();
 }
}

Design Patterns

 121

Figure 63. Java Strategized Locking Use Code

5.2.3 Thread Safe Interfaces
Thread safe interfaces try to minimize locking overhead and intra-class method call dead

locking by providing boundary accessor methods that contain locking. No internal methods

check locks because they trust that the boundary methods have ensured locking is carried out.

Figure 64 shows an example of a class that implements thread safe interfaces. The class has

two methods, the first method accessData1Unsafe returns the sum of the two object variables

someData and someOtherData. The second method accessData2Unsafe simple returns the

value someOtherData. These two methods possess no locking semantics but are made private.

Two additional methods (boundary methods) are provided, accessData1 and accessData2 these

methods acquire locks (block if not able to acquire) call the unprotected private methods and

then release the lock. The actual locking mechanism is similar to the ones provided earlier.

class TrafficLights {
 void t1(final AbstractSynchronizer sync) {
 (new Thread() {
 public void run() {
 System.out.println("Starting EW Cars");
 for (int i=0;i<4;i++) {
 sync.goEW();
 }
 System.out.println("Ending EW Cars");
 }
 }).start();
 }
 void t2(final AbstractSynchronizer sync) {
 (new Thread() {
 public void run() {
 System.out.println("Starting NS Cars");
 for (int i=0;i<4;i++) {
 sync.goNS();
 }
 System.out.println("Ending NS Cars");
 }
 }).start();
 }
 public static void main(String[] argv) {
 System.out.println("Test");

 TrafficLights lights= new TrafficLights();

 AbstractSynchronizer day = new DayTimeSynchronizer();
 lights.t1(day);
 lights.t2(day);

 AbstractSynchronizer night = new NightTimeSynchronizer();
 lights.t1(night);
 lights.t2(night);

 }
}

Design Patterns

 122

The interesting method to examine is accessData1Unsafe, this method uses the other method

accessData2Unsafe however, this call does not have the overhead of having to test and/or

reacquire the lock.

Figure 65 presents the equivalent Java code for the thread safe interface. In the example the

synchronized modifier is used to protect the inside methods of the object. As Java uses re-

entrant monitors this pattern is less of an issue than in other languages that use less flexible

synchronization mechanisms. However, there are still time penalties in Java as the JVM still

has to reacquire the lock on re-entry. This means the pattern may still be useful in some

circumstances. Figure 65 below gives an example of a thread safe interface implement using

the synchronized keyword. Note that the call to accessData1Unsafe and the call to

accessData2Unsafe are re-entrant on the monitor. This means you will still suffer the overhead

of reacquiring the lock. A reasonable optimization of this code would be to remove the

synchronized modifier from all the private methods as they are uncallable from outside anyway.

The only requirement for this modification is that all public and protected methods must be

synchronized so that they have a thread safe interface to the outside. Consequently, in these two

Figure 64. Join Java Thread Safe Interface Code

class ThreadSafeInterface {
 private int someData=3;
 private int someOtherData=9;
 public ThreadSafeInterface() {
 unlock();
 }
 public int accessData1() {
 lock();
 int result = accessData1Unsafe();
 unlock();
 return result;
 }
 public int accessData2() {
 lock();
 int result = accessData2Unsafe();
 unlock();
 return result;
 }
 private void lock() & unlock() {}

 //Note that this method accesses another
 //method without having to check for
 //locking.
 private int accessData1Unsafe() {
 return accessData2Unsafe() + someData;
 }
 private int accessData2Unsafe() {
 return someOtherData;
 }
 //... other methods that may change the instance variables
}

Design Patterns

 123

examples it can be seen that generally the Java solution is the more appropriate as the

synchronized keywords do naturally what the Join Java solution is trying to emulate.

5.2.4 Double Check Locking Optimization
The double-checked locking optimization tries to avoid synchronization overhead wherever it is

not necessary by doing an initial check before trying to acquire the more expensive lock. The

example presented in Figure 66 simply checks a flag first (thus avoiding repeated checks of the

lock). Initially when the class is instantiated the constructor makes a call to unlock. This call

allows the next call to lock to execute immediately. There is also a method initValue that is

supposed to initialize the variable value when first called. When an outside thread calls the

initValue method a flag (value) is checked to see if initialization has been completed. If the flag

has not been set, try to acquire the lock and then recheck the flag to make sure that another

Figure 65. Java Thread Safe Interface Code

Figure 66. Join Java Double Check Locking Optimization Code

class ThreadSafeInterface {
 private int someData=3;
 private int someOtherData=9;
 public ThreadSafeInterface() {
 }
 public synchronized int accessData1() {
 int result = accessData1Unsafe();
 return result;
 }
 public synchronized int accessData2() {
 int result = accessData2Unsafe();
 return result;
 }
 private synchronized int accessData1Unsafe() {
 return accessData2Unsafe() + someData;
 }
 private synchronized int accessData2Unsafe() {
 return someOtherData;
 }
}

ordered class DoubleLockingOpt {
 String value;
 public DoubleLockingOpt() {unlock(); }
 public void initValue() {
 if (value==null) {
 lock();
 if (value==null) {
 value = "value initialized";
 }
 }
 }
 void lock() & unlock() {}
}

Design Patterns

 124

thread has not pre-empted this thread. Finally, if the flag still has not been set, initialize the

value. In the entire life of the object the synchronization check should only occur at most a few

times and only then when a race condition happens between the first test and the lock call.

Unfortunately, even though this pattern initially looks like a good optimization, it cannot work

in Java due to the design of the JVM. For optimization, the JVM can reorder instructions in the

absence of a synchronized keyword. Even without this optimization, using multiple processors

can lead to subtle problem in evaluation. This pattern in the presence of either an optimizing

compiler or multiprocessor machine can bypass the lock making the pattern unreliable at best.

For further information please consult (Bacon, Bloch et al. 2002). For completeness in Figure

67 an example of the pattern implemented in Java is given. This example (if it worked) is

simpler in Java due to the synchronized block being effectively used. It should be noted that on

later versions of the Java virtual machine the use of synchronized block is extremely slow (Sun

2002) (see section 7.2) in comparison to the use of synchronized modified methods.

Consequently, to improve performance the synchronized block should be removed and made a

separate method. However, by doing this, one ends up with more complexity in the final

program.

Figure 67. Java Double Check Locking Optimization Code

class DoubleLockingOpt {
 String value;
 public DoubleLockingOpt() {}
 public void initValue() {
 if (value==null) {
 synchronized(this) {
 if (value==null) {
 value = "value initialized";
 }
 }
 }
 }
}

Design Patterns

 125

5.3 Patterns for Concurrency
In this section design patterns for concurrency (Schmidt 2000) are presented. The first two

patterns, active objects and monitor objects are designed to facilitate sharing of resources.

Active objects decouple method execution from method invocation. The monitor object pattern

synchronizes method execution in order to restrict threads from running more than one

synchronized method at one time. The second set of patterns is designed to facilitate higher-

level concurrency synchronization mechanisms. Half sync/half Async pattern separates

synchronous operations from asynchronous operations via a queuing mechanism. The

leaders/followers provides an architecture which supports the idea of thread pools in which each

thread has turns at dealing with incoming requests. The final pattern thread-specific storage

seeks to minimize the complexity of synchronization by minimizing the sharing of data between

threads.

5.3.1 Active Object
The idea of the Active Object pattern is to decouple method execution from method invocation.

In Join Java, this is extremely simple; Figure 68 shows how by using a signal return type the

effect is attained.

Figure 69 gives an example of the equivalent Java code. It can be noticed that the Java version

of the above code is longer and more complicated. To implement the Active object pattern in

Join Java you simply need to make a method with signal return type and call that from the

constructor of the Object. In Java you are required to create an anonymous thread, set all the

parameters (make them final) and then pass them into the anonymous inner class. Then call that

from the constructor.

Figure 68. Join Java Active Object Code

class ActiveObjectExample {
 public ActiveObjectExample(int x, int y, int z) {
 decoupledMethod(x,y,z);
 }
 private signal decoupledMethod(int x, int y, int z) {
 //do something
 //this method decouples the invocation from the execution
 }
}

Design Patterns

 126

5.3.2 Futures
A more rewarding examination of the Active Object pattern is the idea of futures (Chatterjee

1989) presented in Figure 70. When an asynchronous method is used, there must be some way

of retrieving values from the asynchronous method. The mechanism for returning these values

to the caller is a future. In Join Java, there is no specific futures mechanism however; the

extension supports the idea of futures in a straightforward manner. Figure 70 shows an

asynchronous method (emulating the idea of Active Objects) doSomething which is called with

a String parameter. This method does some processing then calls the method doneSomething

passing the completed data to a Join method acquireFuture() & doneSomething. This Join

method will return the result to the caller of acquireFuture when that method is called.

Consequently to use this future a method would call doSomething then return immediately do

some other processing then to pickup the result for the processing call acquireFuture and read

the returned value. This process is illustrated in the main method.

Figure 71 shows the equivalent Futures code written in Java. Even a cursory comparison of the

code shows that the Join Java code is considerably shorter and more straightforward. The

simplicity is due to a number of features in the language extension. Firstly thread creation is

done by an asynchronous return type signal where as in Java one must create an anonymous

inner class that extends thread. Secondly, the dynamic channel creation can act as the futures

mechanism. In Java, the lack of these two features means that a low-level mechanism must be

used to express the structure.

Figure 69. Java Active Object Code

class ActiveObjectExample {
 public ActiveObjectExample(int x, int y, int z) {
 decoupledMethod(x,y,z);
 }
 private void decoupledMethod(final int x,final int y,final int z) {
 //this method decouples the invocation from the execution
 (new Thread() {
 public void run() {
 //do something
 }
 }).start();
 }
}

Design Patterns

 127

Figure 70. Join Java Futures Code

Figure 71. Java Futures Code

class FuturesExample {
 signal doSomething(String param) {
 //do something
 //then signal that result is available
 String result = "meaningful data";
 doneSomething(result);
 }
 String acquireFuture() & doneSomething(String res) {
 return res;
 }
 public static void main(String[] argv) {
 FuturesExample x = new FuturesExample();
 x.doSomething("some data");
 //do something else while waiting for processing
 //to complete
 String result = x.acquireFuture();
 System.out.println(result);
 }
}

class FuturesExample {
 private boolean finished=false;
 private String futureResult=null;
 final FuturesExample monitorHandle=this;

 public void doSomething(String param) {
 (new Thread() {
 public void run() {
 //do something
 //then signal that result is available
 monitorHandle.futureResult = "meaningful data";
 monitorHandle.finished=true;
 synchronized(monitorHandle) {
 monitorHandle.notify();
 }
 // pass information doneSomething(result);
 }
 }).start();
 }

 public synchronized String acquireFuture() {
 while(!finished){
 try{
 wait();
 } catch(InterruptedException ex) {/*report error*/}
 }
 return futureResult;
 }

 public static void main(String[] argv) {
 FuturesExample x = new FuturesExample();
 x.doSomething("some data");
 //do something else while waiting for processing
 //to complete
 String result = x.acquireFuture();
 System.out.println(result);
 }
}

Design Patterns

 128

5.3.3 Monitor Object
The monitor object design pattern synchronizes concurrent method execution to ensure that

only one method at a time can run. Figure 72 shows a Join Java example implementation of the

monitor object design pattern. In the example, every method is a Join method that will only

execute in the presence of a call to unlocked. When the class is instantiated, a call to unlocked

is made by the constructor which will allow the next call to any of the methods possible. When

a call to any of the methods occur the method will be allowed to proceed but no others. When

the method is complete it recalls unlocked making it possible for another waiting method to be

executed. This strategy ensures that only one method at a time is executable. As a last step

each method must call the unlocked Join fragment to allow another waiting method to continue.

This is almost the equivalent of the synchronized keyword in Java with one major difference.

In Java a synchronized block of code may hold the lock more than once (recursive locking)

whilst Join Java you must contend with the other callers for a lock. Due to the flexible of Join

Java you could emulate the recursive locking of normal Java by removing the synchronized

code from the locking method into its own method and allowing the new method to be called

directly from inside a locked method.

Figure 72. Join Java Monitor Object Code

class MonitorObject {
 public MonitorObject() {
 unlocked();
 }

 void method1(String param) & unlocked() {
 //synchronized code
 System.out.println(param);
 unlocked();
 }

 void method2(String param) & unlocked() {
 //synchronized code
 System.out.println(param);
 unlocked();
 }

 void method3(String param) & unlocked() {
 //synchronized code
 System.out.println(param);
 unlocked();
 }

 void method4(String param) & unlocked() {
 //synchronized code
 System.out.println(param);
 unlocked();
 }
}

Design Patterns

 129

A final important difference between is that Java monitors are not parameterised whereas Join

Java monitor pattern can be parameterised. As in the scoped locking pattern, the simplicity of

the Java solution is open to Join Java programmers to use if they wish.

Presented below in Figure 73 is the equivalent Java code with one exception. The Java monitor

implementation is re-entrant. That means that a locked method can call another locked method

and will reacquire the lock immediately. To implement this in the Join Java extension the

combination of the thread safe interface pattern and the monitor pattern would emulate the re-

entrant nature of the Java code. The Java code can be seen to be more straightforward as the

pattern is natively supported by the language. The advantages of the Join Java extension

method of handling monitor style locks is that multiple locks can be used rather than just using

the single one implied by the Java implementation. The monitor style locks can also carry

parameters that can allow extra information to be carried between lock and unlock operations.

Figure 73. Java Monitor Object Code

5.3.4 Half-Sync/Half-Async
The half-sync/half-async pattern decouples asynchronous and synchronous processing in

concurrent programs. It provides an asynchronous layer and a synchronous layer and then

couples them together with a queue layer to handle the communication between them. Figure

74, Figure 75 and Figure 76 provides a Join Java implementation of this pattern. The first class

HalfSyncHalfASync is a test class showing how to start up the system. The class

class MonitorObject {
 public MonitorObject() {
 }
 synchronized void method1(String param) {
 //synchronized code
 System.out.println(param);
 }
 synchronized void method2(String param) {
 //synchronized code
 System.out.println(param);
 }
 synchronized void method3(String param) {
 //synchronized code
 System.out.println(param);
 }
 synchronized void method4(String param) {
 //synchronized code
 System.out.println(param);
 }
}

Design Patterns

 130

ExternalSource simulates a external source that is asynchronously sending messages to the

asynchronous layer ASyncService. This layer accepts messages then enqueues them via the

QueueLayer class for retrieval by the SyncService that reads message synchronously. The point

to note in this application is the use of non-signal return types in the queue layer to block calls

from the synchronous layer as compared to the use of signal return types in the queue layer to

avoid blocking calls from the asynchronous layer.

Figure 74. Join Java Half-Sync/Half-ASync Test Code

Figure 75. Join Java Half-Sync/Half-ASync Services Code

class HalfSyncHalfASync {

 public static void main(String[] argv) {
 //setup
 QueueLayer ql = new QueueLayer();
 SyncService ss = new SyncService(ql);
 ASyncService as = new ASyncService(ql);
 ExternalSource es = new ExternalSource(as);

 //startup sync service
 ss.runningService();

 //cause an external event
 es.someExternalEvent();
 }
}

class SyncService {
 QueueLayer queue;
 SyncService(QueueLayer queue) {
 this.queue = queue;
 }
 signal runningService() {
 //this mimics some synch process
 //it will be blocked at the call to
 //read
 System.out.println(queue.read());
 }
}

class ASyncService {
 QueueLayer queue;
 ASyncService(QueueLayer queue) {
 this.queue = queue;
 }
 //this method does not block hence
 //acts asynch
 signal interrupt(Object message) {
 queue.enqueue(message);
 }
}

Design Patterns

 131

In Figure 77, Figure 78, Figure 79 and Figure 80 the equivalent Java code is shown. Note that

Figure 77 is identical to the Join Java test code but is given again for completeness. Figure 78

shows that the Synch and Async service is a little more complicated with the programmer

having to create a thread for the asynchronous service. The thread in the synchronous service is

to allow the test code to continue running. Figure 79 shows how much more complicated this

pattern is to implement in Java as opposed to Join Java. There are greater than twenty lines of

locking and queuing code in Java vs. two lines in Join Java. This is due to the user having to

not only create anonymous inner threads but also provide correct locking in order to protect the

message counter and the Boolean flag. A subtlety in the implementation is the requirement that

the inner thread in the enqueues method must have a reference to the outer class in order for it

to use the outer class’s monitor. If the method was synchronized one would only synchronize

the creation of the thread, the notify method call would in most probability cause a

IllegalMonitorException to be thrown as the thread state is being modified in an unsafe way.

One could argue that the thread is not required in this case as the addition to the data structure is

immediate. However, the literal implementation of the pattern requires the method to be

asynchronous. This also does not stop this common situation arising in other applications. The

Join Java implementation stops these problems arising by encapsulating the lock in the

synchronization mechanism. Consequently, the programmer does not need to worry about

where to place critical sections of code, as the threads cannot enter the method until they satisfy

the locking criteria.

Figure 76. Join Java Half-Sync/Half-ASync Queue and External Source Code

class QueueLayer {
 //the read method blocks the caller because
 //its return type is Object
 //enqueue does not block its caller because
 //its return type is implicitly signal
 Object read() & enqueue(Object message) {
 return message;
 }
}
class ExternalSource {
 ASyncService collaborator;
 ExternalSource(ASyncService collab) {
 collaborator = collab;
 }
 signal someExternalEvent() {
 //this just random emits an event
 collaborator.interrupt(new String("Some message"));
 }
}

Design Patterns

 132

Figure 77. Java Half-Sync/Half-Async Test Code

Figure 78. Java Half-Sync/Half-Async Service Code

class HalfSyncHalfASync {

 public static void main(String[] argv) {
 //setup
 QueueLayer ql = new QueueLayer();
 SyncService ss = new SyncService(ql);
 ASyncService as = new ASyncService(ql);
 ExternalSource es = new ExternalSource(as);

 //startup sync service
 ss.runningService();

 //cause an external event
 es.someExternalEvent();
 }
}

class SyncService {
 QueueLayer queue;
 SyncService(QueueLayer queue) {
 this.queue = queue;
 }
 void runningService() {
 (new Thread() {
 public void run() {
 //this mimics some synch process
 //it will be blocked at the call to
 //read
 System.out.println(queue.read());
 }
 }).start();
 }
}
class ASyncService {
 QueueLayer queue;
 ASyncService(QueueLayer queue) {
 this.queue = queue;
 }
 //this method does not block hence
 //acts asynch
 void interrupt(final Object message) {
 (new Thread() {
 public void run() {
 queue.enqueue(message);
 }
 }).start();
 }
}

Design Patterns

 133

Figure 79. Java Half-Sync/Half-Async Queue Source Code

Figure 80. Java Half-Sync/Half-Async External Source Code

class QueueLayer {
 //the read method blocks the caller because
 //its return type is Object
 //enqueue does not block its caller because
 //its return type is implicitly signal

 private final java.util.Vector messages = new java.util.Vector();
 private int count=0;
 final QueueLayer monitor = this;

 synchronized Object read() {
 while(count < 1) {
 try {
 wait();
 } catch (Exception ex) {/*report error*/}
 }
 return messages.remove(0);
 }

 void enqueue(final Object message) {
 (new Thread() {
 public void run() {
 synchronized (monitor) {
 messages.add(message);
 count++;
 monitor.notify();
 }
 }
 }).start();
 }
}

class ExternalSource {
 ASyncService collaborator;

 ExternalSource(ASyncService collab) {
 collaborator = collab;
 }

 void someExternalEvent() {
 //this just randomly emits an event
 (new Thread() {
 public void run() {
 collaborator.interrupt(new String("Some message"));
 //do something
 }
 }).start();
 }
}

Design Patterns

 134

5.3.5 Leader/Follower
The leader/followers pattern is a paradigm that allows multiple threads to take turns handling

incoming service oriented requests. That is the pattern supports the idea of a thread pool in

which threads are reused so that the overhead of destroying and rebuilding threads is removed.

The leader/followers pattern is the mechanism in which these threads are stored and forwarded

to the jobs they need to do. Figure 81 shows a simplified example of a leader/followers pattern.

In this example, a class called LeaderFollowers is created with an asynchronous method

(athread) which loops on some condition. On each loop, it calls waitForLeadershipToken

which is blocked until a corresponding call to leadershipToken is received. When the

leadershipToken is received, the method assumes the leadership role does the work required and

later relinquishes the leadership role by calling leadershipToken. Another thread that has called

the method waitForLeadershipToken will then be allowed to proceed.

Figure 81. Join Java Leader/Follower Code

ordered class LeaderFollowers {
 boolean someAbortCondition = false;

 public LeaderFollowers(int numThreads) {
 leadershipToken();
 for(int i=0; i<numThreads;i++) {
 aThread(i);
 }
 }

 signal aThread(int identity) {
 System.out.println("New Thread");
 while (true) {
 //wait for leadership and an event
 String ev=waitForLeaderShip();
 //then give up leadership
 leadershipToken();
 //process the event
 if(ev==null) { return; }
 System.out.println("Got Leader Ship Ident "+identity+":"+ev);
 }
 }

 //for a thread to execute it needs leadership
 String waitForLeaderShip() & leadershipToken() & event(String ex) {
 //System.out.println("Someone took leadership");
 return ex;
 }

 String waitForLeaderShip() & leadershipToken() & finished() {
 System.out.println("Thread End!!");
 return null;
 }
}

Design Patterns

 135

Figure 82. Java Leader/Follower Code

class LeaderFollowers {
 boolean someAbortCondition = false;
 private java.util.List eventInfo;

 public LeaderFollowers(int numThreads) {
 //Vital to protect data structure this is often forgotten
 eventInfo=java.util.Collections.synchronizedList(
 new java.util.ArrayList());
 for(int i=0; i<numThreads;i++) {
 aThread(i);
 }
 }

 void aThread(final int identity) {
 (new Thread() {
 public void run() {
 System.out.println("New Thread");
 while (!someAbortCondition || eventInfo.size()>0) {
 //wait for leadership and an event
 String ev=waitForLeaderShip();
 //handle the event
 System.out.println(
 "Got LeaderShip Ident "+identity+":"+ev);
 }
 System.out.println("Thread Ends");
 }
 }).start();
 }

 //for a thread to execute it needs leadership
 String waitForLeaderShip() {
 String eventId=null;
 synchronized(this) {
 try {
 if (eventInfo.size()==0) {
 wait();
 }
 //System.out.println("Someone took leadership");
 eventId = (String) eventInfo.remove(0);
 } catch (InterruptedException ex) {/*report error*/}
 return eventId;
 }
 }

 synchronized void event(String ex) {
 eventInfo.add(ex);
 notify();
 }
}

Design Patterns

 136

5.4 Simple Concurrency Mechanisms
It is important to establish how Join Java can represent all the basic concurrency and

synchronization mechanisms. In this section, a number of low-level synchronization and

concurrency mechanisms are emulated. The standard monitor structure is omitted as that has

been illustrated as a pattern. Some of these examples are more succinctly expressed in the

native Java language however; these examples are given to show that anything expressible in

Java concurrency semantics is also expressible in Join Java semantics.

5.4.1 Semaphores
Simply speaking a semaphore is a variable value on which two operations manipulate. The first

of the two operations P (or wait) decrements the variable unless the variable value is < 0. If this

is the case P is blocked until variable value is >= 0 and then it decrements value. The second

operation V (or elevate) increments value. Both these operations must be atomic in order to

avoid race conditions on the check and set operations. Figure 83 shows a Join Java program

that exhibits the same behaviour as that of a semaphore. This code is similar to any

implementation of semaphores in Java except the blocking semantics of Join Patterns are used

instead of the customary wait/notify methods of standard Java. The Join method void P() &

unblockP() is the core of the Join implementation. When this object is created a single call to

unblockP() is made. Consequently, when the first call to P() occurs it is allowed to complete.

Any further calls to P() are blocked in the fifo queue of the pattern matcher. When V() is called

a call to unblockP() is made allowing the next P() to be unblocked. One of the main

requirements of a semaphore is to create a queue of the waiting threads. In this code, it is not

immediately apparent where this queue appears. In fact, the pattern matcher implicitly holds all

waiting calls transparently to the programmer in a queue.

Design Patterns

 137

As can be seen with emulating unbounded semaphores13 there is a significant number of lines

difference between the Java implementation in Figure 83 and the Join Java implementation in

Figure 84. The Join Java implementation appears straightforward with a simple lock being

formed that represents a block on calls to P() for each decrement of the semaphore. When the

V() is called the P() is unblocked for the next waiting P().

Figure 84. Java Code Emulating Semaphores

13 These examples could be converted to a counting semaphore by the introduction of a simple counter in the Java example and a

number of calls to unBlockP() being called in the constructor of the Join Java example.

Figure 83. Join Java Code Emulating Semaphores

ordered class Semaphore {
 public Semaphore() {
 unblockP();
 }

 //Proberen (wait)
 public void P() & unblockP() {
 }

 //Verhogen (elevate)
 public signal V() {
 unblockP();
 }

 //if call to V occurs with no waiting Ps eliminate the call
 public signal unblockP() {}
}

class Semaphore {
 private int value=0;

 //wait proberen
 synchronized public void P() {
 value--;
 if(value<0) {
 try {
 wait();
 } catch (InterruptedException ex) {/* handle error */}
 }
 }

 //elevate Verhogen
 synchronized public void V() {
 value++;
 if(value<=0) {
 notify();
 }
 }
}

Design Patterns

 138

5.4.2 Timeouts
A structure that is not directly available in Java14 is the idea of a timeout on synchronization.

This is the ability for a blocked method to timeout rather than wait for the completion of an

event that may never occur. Join Java provides no specific mechanism for timing out method

calls. However, it is straightforward to incorporate this behaviour into Join Java programs by

making use of the ordered modifier. Figure 85 shows an example class that has a call to a

method block which should return if ready is called or 2 seconds elapses (a timeout). In this

class the compiler is told to use the ordered (or deterministic) evaluation behaviour for Join

methods. This means that in the case where there are two possible completed patterns it should

accept the first one defined in the class. The first method block when called, calls a method

timer which is a thread (due to the signal return type) and calls a second method block2. The

Join method block2() & ready() defines the behaviour to exhibit if the block method completes

before the timeout. In this case it prints a message "All Okay". The third method which is also

a Join method block2() & signalTimeOut() defines the behaviour if the call times out. The point

to note with the two Join methods is that the first Join fragments are identical (block2) however,

the second fragment is different. Consequently, it can be reasoned that if there is a call to

block2 waiting (which is the case here) the choice of which Join method to execute is made at

runtime and depends on which fragment ready or signalTimeOut occurs first. The fourth

method signalTimeOut acts as a cleaner that removes the timer's call to signalTimeOut in the

event that the block2 call was completed by the arrival of ready. The final method is a thread

that sleeps for about two seconds15 and calls the signalTimeOut fragment. A true

implementation would also have to handle the situation of multiple calls arriving and

associating the timeouts to the specific calls. This would be achieved using simple conditionals

via the arguments of the timeout fragment.

14 Java supplies a TimerTask (since version 1.3) (Sun 1996) however, this thesis is examining language level implementations rather

than library level.

15 Due to the implementation of the Java JVM’s in Java this means at least two seconds. There is no guarantee that it will happen
exactly at 2 seconds.

Design Patterns

 139

In Figure 86, the equivalent standard Java code is shown. The shorter Java solution using the

wait(time) to block and then use a notify to prematurely abort the timeout does not however

allow the programmer to distinguish what caused the wait to reawaken. You would then have

to use flags in that example which would complicate the code. Consequently using the Thread

method interrupt is the most concise solution available that still allows the programmer to

distinguish between a timeout and an abort.

Figure 85. Join Java Timeout

ordered class Timeout {
 //set a timer and block
 public void block() {
 System.out.println("Timeout Program Starting");
 timer(2000);
 block2();
 }

 //This is the code we execute if the
 //method gets woken before the timeout
 private void block2() & ready() {
 System.out.println("All Okay");
 }

 //Message to send if we time out
 private void block2() & signalTimeOut() {
 System.out.println("TimedOut");
 }

 //this is just to clear the pool

 private signal signalTimeOut() {}

 public signal ready() {}

 //Timer to generate an abort
 public signal timer(long time) {
 //delay
 try {
 System.out.println("thread sleeping");
 Thread.sleep(time);
 System.out.println("thread waking");
 } catch (Exception ex) {
 System.err.println("sleep Exception");
 }
 signalTimeOut();
 }
}

Design Patterns

 140

Figure 86. Java Timeout

5.4.3 Channels
A channel is an abstraction in which a mechanism is provided to allow messages to be

transferred between concurrent code segments. This differs from shared memory systems

where a common memory segment is shared and each concurrent code segment accesses it

through some locking mechanism. The shared memory tends to be non-scaleable as there is no

explicit definition of control. That is the shared memory access tends to be arbitrary and global.

This problem is somewhat reminiscent of the problems goto (Dijkstra 1968) introduced into

programming of imperative languages. If there is a lot of communication between threads, it is

often advisable to use a higher-level abstraction to that of shared memory. One of these

solutions is the channel abstraction. In Java whilst there is a pipe class (Sun 1996) there is no

specific syntactic support for message passing between concurrent threads. Consequently, in

Java to emulate the idea of a message passing construct between threads you need to write

library code. This can be seen in Figure 88 where synchronized methods are used by the data

structure to store waiting messages. When the input command is called, the parameter is put

onto a queue. When a recipient wants a message they call the output method and the message is

class Timeout {
 //time to timeout at
 final long time = 2000;
 Thread waiter=null;

 //method to prematurely abort the blocked call
 void abort() {
 waiter.interrupt();
 }

 //code to execute when timeout occurs
 void ready() {
 System.out.println("Method Timed Out");
 }

 void block() {
 try {
 waiter = Thread.currentThread();
 synchronized(this) {wait(time);}
 ready();
 } catch (InterruptedException ex) {
 System.err.println("Did not timeout");
 } catch (Exception ex) {
 System.err.println("block prob"+ex);
 }
 }
}

Design Patterns

 141

received or blocked until one is available. Comparing this with the Join Java program in Figure

87 it can be seen that Join Java is a lot simpler.

In fact, the Join Java implementation is much more flexible as it allows for pattern matching. If

one were to add a second Join method, one could make runtime decisions on which code to

execute16. In the Java solution, this would be a lot more complicated as one would need to

generate all the appropriate code for determining which method body to execute based on the

methods called by the user.

5.4.4 Producer Consumer
The producer consumer problem is a standard concurrency problem where two sets of

concurrent objects communicate via a shared storage resource. Producers send messages to the

shared resource that buffers the messages until a corresponding consumer arrives. Consumers

arrive and try to remove messages from the storage resource. They either receive one of the

messages left by a producer or are blocked if there are no messages available. In this section,

16 See section 3.4.1.3 for further information.

Figure 87. Join Java Uni-Directional Channel

Figure 88. Java Uni-Directional Channel

class UniChannel {
 int output() & input(int value) {
 return value;
 }
}

class UniChannel {
 int inputwaiting=0;
 int outputwaiting=0;
 java.util.Vector values=new java.util.Vector();
 synchronized int output() {
 if (inputwaiting==0) {
 try {
 wait();
 } catch (InterruptedException ex) {}
 }
 inputwaiting--;
 return ((Integer)values.remove(0)).intValue();
 }
 synchronized void input(int newvalue) {
 values.add(new Integer(newvalue));
 inputwaiting++;
 synchronized(this) {
 notify();
 }
 }
}

Design Patterns

 142

the producer consumer code example provided by Sun (Campione, Walrath et al. 2000) is used.

This code is presented in Figure 91 and Figure 92. In this example, they have supplied three

classes a producer class, a consumer class and a cubbyhole class. The cubbyhole class acts as

the communications mechanism between the producers and consumers.

When a producer sends a message, it calls the put method in the cubbyhole class leaving the

message. This message is buffered waiting on the next consumer to arrive. The Join Java

equivalent code is presented in Figure 89 and Figure 90. In the example the code has been

designed to as closely as possible reflect the Java example in order to see the improvement in

code readability. There are likely code optimizations that could be made in the Join Java

Figure 89. Join Java Producer/Consumer Code

class Producer {
 private CubbyHole cubbyhole;
 private int number;

 public Producer(CubbyHole c, int number) {
 cubbyhole = c;
 this.number = number;
 }

 signal start() {
 for (int i = 0; i < 10; i++) {
 cubbyhole.put(i);
 System.out.println("Producer #" + this.number
 + " put: " + i);
 try {
 Thread.sleep((int)(Math.random() * 100));
 } catch (InterruptedException e) { }
 }
 }
}

class Consumer {
 private CubbyHole cubbyhole;
 private int number;

 public Consumer(CubbyHole c, int number) {
 cubbyhole = c;
 this.number = number;
 }

 signal start() {
 int value = 0;
 for (int i = 0; i < 10; i++) {
 //System.out.println("Consuming");
 value = cubbyhole.get();
 System.out.println("Consumer #" + this.number
 + " got: " + value);
 }
 }
}
(Source Modified From: (Campione, Walrath et al. 2000))

Design Patterns

 143

version to reduce further the code size. The producer and consumer classes are similar to the

Java example except for the use of the asynchronous methods, which allows us to omit some of

the overhead code that you need to write in the standard Java example. The Join Java cubby

hole class is a lot simpler as it uses two Join fragment, calls empty and filled to regulate access

to the buffer. If the cubbyhole is empty that is an empty Join fragment has been called, a put

method is allowed to complete and return. If it is not empty then the producers put method

blocks the producer until space is made available. When the consumers get command is called

and the buffer is not filled then it is blocked until a producer calls the corresponding put

command. The Join Java cubbyhole class operates in exactly the same way as the Sun example

in Figure 92.

Figure 90. Join Java Producer/Consumer Support Code

public class CubbyHole {
 public CubbyHole() {
 empty();
 }

 public void put(int value) & empty() {
 //System.out.println("Buffer filled");
 filled(value);
 }

 public int get() & filled(int value) {
 //System.out.println("Buffer Emptied");
 empty();
 return value;
 }
}

class Test {
 public static void main(String[] args) {
 CubbyHole c = new CubbyHole();
 Producer p1 = new Producer(c, 1);
 Consumer c1 = new Consumer(c, 1);
 p1.start();
 c1.start();
 }
}
(Source Modified From:(Campione, Walrath et al. 2000))

Design Patterns

 144

Figure 91. Java Producer/Consumer Code

public class Producer extends Thread {
 private CubbyHole cubbyhole;
 private int number;

 public Producer(CubbyHole c, int number) {
 cubbyhole = c;
 this.number = number;
 }

 public void run() {
 for (int i = 0; i < 10; i++) {
 cubbyhole.put(i);
 System.out.println("Producer #" + this.number
 + " put: " + i);
 try {
 sleep((int)(Math.random() * 100));
 } catch (InterruptedException e) { }
 }
 }
}
public class Consumer extends Thread {
 private CubbyHole cubbyhole;
 private int number;

 public Consumer(CubbyHole c, int number) {
 cubbyhole = c;
 this.number = number;
 }

 public void run() {
 int value = 0;
 for (int i = 0; i < 10; i++) {
 value = cubbyhole.get();
 System.out.println("Consumer #" + this.number
 + " got: " + value);
 }
 }
}
(Source: (Campione, Walrath et al. 2000))

Design Patterns

 145

Figure 92. Java Producer/Consumer Support Code

Figure 93. Join Java Bounded Buffer

public class CubbyHole {
 private int contents;
 private boolean available = false;
 public synchronized int get() {
 while (available == false) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 available = false;
 notifyAll();
 return contents;
 }
 public synchronized void put(int value) {
 while (available == true) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 contents = value;
 available = true;
 notifyAll();
 }
}

public class ProducerConsumerTest {
 public static void main(String[] args) {
 CubbyHole c = new CubbyHole();
 Producer p1 = new Producer(c, 1);
 Consumer c1 = new Consumer(c, 1);
 p1.start();
 c1.start();
 }
}
(Source: (Campione, Walrath et al. 2000))

class Buffer {
 private int size = 5 ;
 public Buffer() {
 for (int i=0;i<size;i++) {
 System.out.println(".");
 emptyBuffer();
 }
 }
 public void deposit(Object value) & emptyBuffer() {
 filledBuffer(value);
 }
 public Object fetch() & filledBuffer(Object value) {
 emptyBuffer();
 return value;
 }
}

Design Patterns

 146

5.4.5 Bounded Buffer
The bounded buffer is a variant on the producer consumer in which the shared storage resource

for exchanging messages has a limited number of cells that can be utilized. It is more

complicated than the producer consumer problem in the previous section as it has multiple

buffers. An example Join Java implementation of the bounded buffer class is given in Figure

93. The buffer class on start up will create a number of calls to the emptyBuffer Join fragment.

An emptyBuffer is called for each buffer cell that is to be made available to the user of the class.

These act as the markers for empty cells in the bounded buffer. When a call to deposit arrives,

if there is an empty buffer available the call will complete by calling a filledBuffer method with

the message as the parameters. If a fetch Join fragment method call occurs and a filledBuffer

fragment call is available, the parameter of the filledBuffer is returned to the caller and a buffer

is made available via a call to emptyBuffer. In this way, the system keeps a constant number of

Join fragments in the pool. These Join fragments are either emptyBuffer calls indicating an

available buffer cell or a filledBuffer(<param>) indicating a buffer cell is full and contains the

parameter. Join methods are implicitly synchronized consequently there is no point in which

the transitions become non-deterministic in this example.

The standard Java version can be seen in Figure 94. One can see that the code presented here is

more complicated as it needs to not only use a data-structure to store the buffer contents it also

needs some mechanism to record the status of the buffers. In the example presented above the

storage is achieved via an array of Objects and the status recording is done via the use of

semaphores17. This means that the Java version relies on additional code (see Figure 84) in

order to get the same result as the Join Java code in Figure 93.

17 The Java solution could be implemented using monitors.

Design Patterns

 147

5.4.6 Readers Writers
In the reader-writer concurrency problem any number of readers can read a shared resource

providing no writer is active. Only one writer can be active at a time and only if there are no

readers. Consequently, the problem is giving writers exclusive access to the shared resource

without starving the readers. The Join Java program presented in Figure 95 allows writers to

have exclusive access to the resource. In this program, the resource is the eventInfo array. The

readers and writers are asynchronous methods that appear in Figure 96. Each thread takes turns

calling either the read method or the write method. When a write method occurs a startWriting

fragment is called. This call will be blocked until calls to noReading and noWriting are called.

This effectively provides the mutual exclusion that the writer thread needs. When the two

methods are called and the startReading method continues a counter for the numWriters’s is

incremented. The resource is then modified and the endWriting method is called that will then

decrement the numWriters counter. If the numWriters is zero then the noWriter method is

called allowing either a reader or writer to proceed. The process for readers is similar except it

omits the requirement for no readers.

Figure 94. Java Bounded Buffer

class Buffer {
 private int size = 5 ;
 private Object store[] = new Object[size] ;
 private int inptr = 0 ;
 private int outptr = 0 ;

 Semaphore spaces = new Semaphore(size) ;
 Semaphore elements = new Semaphore(0) ;

 public void deposit(Object value) {
 spaces.P() ;
 store[inptr] = value ;
 inptr = (inptr+1) % size ;
 elements.V() ;
 }

 public Object fetch() {
 Object value ;
 elements.P() ;
 value = store[outptr] ;
 outptr = (outptr+1) % size ;
 spaces.V() ;
 return value ;
 }
}
(Source: (Matthews 2002))

Design Patterns

 148

Figure 95. Join Java Reader Writers Source part 1

Figure 96. Join Java Reader Writers Source part 2

class ReaderWriter {
 int numberReads=1000; int numberWrites=1000;
 private java.util.List eventInfo =
 new java.util.ArrayList(100);
 int numReaders=0; int numWriters=0;
 public ReaderWriter() {
 noReading(); noWriting();
 for(int i=0;i<numberReads;i++) {
 eventInfo.add(i,"INIT"+i+"]");
 }
 }
 private void write(String value,int location) {
 startWriting();
 eventInfo.set(location,value);
 endWriting();
 }
 private String read(int location) {
 startReading();
 String value = (String) eventInfo.get(location);
 endReading();
 return value;
 }
 private void startWriting()&noReading()&noWriting() {
 numWriters++;
 }
 private void startReading() & noWriting() {
 numReaders++;
 }
 private void endWriting() {
 numWriters--;
 noReading();
 if(noWriters==0) noWriting();
 }
 private void endReading() {
 numReaders--;
 noWriting();
 if(noReaders==0) noReading();
 }
 …. Reader method see next figure
 …. Writer method see next figure
}

 public signal reader() {
 for(int i=0;i<numberReads;i++) {
 System.out.println("Reading "+read(i));
 Thread.yield();
 }
 System.out.println("Reading Ending");
 }
 public signal writer() {
 for(int i=0;i<numberWrites;i++) {
 System.out.println("Writing ");
 write("SomeData:"+i,i);
 Thread.yield();
 }
 }

Design Patterns

 149

The Java solution presented in Figure 97 and Figure 98 is similar in complexity to the Join Java

version. Like the last pattern, the Java solution makes use of semaphores18 to reduce the

complexity of the code19. Whilst in the Join Java code the programmer uses the Join fragment

calls to represent the state of the readers and writers in the Java code the programmer represents

the state via semaphores. The Java version encodes all the logic in the read and write methods

in the class. A subjective observation of this code would indicate that the logic of both

programs could be critiqued for different problems. The Join Java code shows somewhat more

complexity at the method level with additional methods being created to handle the logic of the

interaction. The Java solution shows more complexity at the code level hiding the logic in the

code segments. Arguable the Join Java solution is better because it gives the definition of the

interaction between the readers and writers at the message definition level of the class

specification.

18 This solution could also be implemented as a monitor implementation in Java.

19 The semaphore library is not shown but can be see in section 5.4.1

Figure 97. Java Reader Writers Source part 1

class ReaderWriter {
 int numberReads=1000;
 int numberWrites=1000;
 Semaphore countProtect = new Semaphore(1);
 Semaphore dataProtect = new Semaphore(1);
 int noReaders=0;
 private java.util.List eventInfo =
 new java.util.ArrayList(100);

 private void write(String value,int location) {
 dataProtect.P();
 eventInfo.set(location,value);
 dataProtect.V();
 }

 private String read(int location) {
 countProtect.P();
 noReaders++;
 if (noReaders==1)
 dataProtect.P();
 countProtect.V();
 String eventId = (String) eventInfo.get(location);
 countProtect.P();
 noReaders--;
 if (noReaders==0)
 dataProtect.V();
 countProtect.V();
 return eventId;
 }
 …. Reader method see next figure
 …. Writer method see next figure
}

Design Patterns

 150

Figure 98. Java Reader Writers Source part 2

5.4.7 Thread Pool
The final concurrency pattern examined in this chapter is that of the thread pool20. One of the

more expensive portions of thread operations in most object-oriented languages is thread

creation and deletion. In a naively written application, most threads are created, complete a set

task and then are destroyed. Unfortunately, if these tasks are small and frequent the overhead is

considerable leading to a large portion of time being dedicated to thread creation and deletion.

A solution to this problem is to reuse threads. In this way the creation/deletion overheads are

avoided. In the Join Java solution, (Figure 99 below) threads are created via the asynchronous

method workthread. When the thread pool is instantiated, a number of threads are created and

they all start looping waiting for jobs to arrive. Each thread then waits in the loop calling a Join

fragment getJob(). This synchronous fragment will block while there are no jobs waiting.

When a job arrives (via a call to assigntask()) the getJob() Join fragment matches with the

assigntask() fragment to complete the Join method. The assigntask method passes in a job to

complete and this is returned via the getJob method to the thread. The thread then goes on to

complete the task. When the task is complete, the thread loops back to call getJob again. The

rest of the code is consistent with the Java version in Figure 100. The Java version uses a

collection class List to store its waiting jobs. The collection classes are not thread safe

20 This pattern is also known as the Workers pattern

public void reader() {
 (new Thread() {
 public void run() {
 for(int i=0;i<numberReads;i++) {
 System.out.println("Reading "+read(i));
 Thread.yield();
 }
 System.out.println("Reading Ending");
 }
 }).start();
}

public void writer() {
 (new Thread() {
 public void run() {
 for(int i=0;i<numberWrites;i++) {
 System.out.println("Writing ");
 write("SomeData:"+i,i);
 Thread.yield();
 }
 }
 }).start();
}

Design Patterns

 151

consequently, access to the list needs to be wrapped in a thread safe interface. This is done by a

factory method in the Collections class. This is frequently overlooked by inexperienced

programmers, as it is not immediately obvious that it is needed. The thread mechanism in the

Java version is via an anonymous inner class that loops in a similar fashion to that of the Join

Java version. However, the getJob method is more complicated as there is no mechanism

available to Java to signal and pass objects in the same step. Consequently, the getJob method

uses the standard wait/notify mechanism to signal when a job is ready. The assignTask method

uses the list collection to store the waiting job then calls notify to wake up a thread. The Join

Java code is much more straightforward and concise than the Java code as it does not require

the programmer to handle storage of the jobs and organize the signalling of the threads to

retrieve the jobs. This shortens the code considerably allowing the programmer to concentrate

on other parts of the implementation.

Figure 99. Join Java Thread Pool Source

interface Job {
 public void work(int id);
}
class MyJob implements Job {
 String ident;
 public MyJob(String identity) {
 ident=identity;
 }
 public void work(int id) {
 System.out.println("Doing Work Assigned by "+id+":"+ident);
 try { Thread.sleep((int)(Math.random() * 10));
 } catch (InterruptedException e) { }
 System.out.println(
 "Finished Work Assigned by "+id+":"+ident);
 }
}

class ThreadPool {
 public ThreadPool(int numThreads) {
 for (int i=0;i<numThreads;i++) {
 workerThread(i);
 }
 }
 signal workerThread(int id) {
 Job currentJob;
 while((currentJob=getJob())!=null) {
 currentJob.work(id);
 }
 //System.out.println("Aborting");
 }
 Job getJob() & assignTask(Job newWork) {
 return newWork;
 }
}

Design Patterns

 152

Figure 100. Java Thread Pool Source

interface Job {
 public void work(int id);
}

class MyJob implements Job {
 String ident;
 public MyJob(String identity) {
 ident=identity;
 }
 public void work(int id) {
 System.out.println("Doing Work Assigned by "+id+":"+ident);
 try { Thread.sleep((int)(Math.random() * 10));
 } catch (InterruptedException e) { }
 System.out.println(
 "Finished Work Assigned by "+id+":"+ident);
 }
}

class ThreadPool {
 private java.util.List waitingJobs;
 public ThreadPool(int numThreads) {
 waitingJobs =
 java.util.Collections.synchronizedList(
 new java.util.ArrayList());
 for (int i=0;i<numThreads;i++) {
 workerThread(i);
 }
 }
 void workerThread(final int id) {
 (new Thread() {
 public void run() {
 Job currentJob;
 while((currentJob=getJob())!=null) {
 currentJob.work(id);
 }
 }
 }).start();
 }
 synchronized Job getJob() {
 while (waitingJobs.size()==0) {
 try {
 wait();
 } catch (InterruptedException ex)
 {/*report error*/}
 }
 return (Job) waitingJobs.remove(0);
 }
 synchronized void assignTask(Job newWork) {
 waitingJobs.add(newWork);
 notify();
 }
}

Design Patterns

 153

5.4.8 Other Patterns

The content of this chapter outline only the most common design patterns in use today. There

are still quite a number of other patterns that this thesis has not attempted to cover. In this

section, we will briefly mention these and how they relate to the Join Java extension.

The decision concurrent programmers are frequently presented with is the safety vs.

performance issue. That is a programmer can make a program perfectly safe by synchronizing

all methods. However, the program becomes slow as there is constant locking operations.

Alternatively, the programmer can make the program fast by not locking anything and hoping

for the best. This makes the program quick but dangerous. This decision is not only faced by

application programmers but also library programmers as well. That is library writers are faced

with a choice of speed vs. safety. The Java AWT and Swing libraries are designed to give

programmers a quick and convenient mechanism for creating graphical user interfaces.

However, an issue that arises is the interaction between the GUI library and concurrency. If the

library is made thread safe the library will run extremely slow. If it is not made thread safe it is

fast but components might be corrupted at runtime if concurrent operations are performed on

the graphical components. The library writers of the AWT/Swing chose the fast non-thread safe

approach. This is the approach taken in most GUI libraries. GUI’s are usually based upon the a

central loop which handles events and redraws of the environment. They implicitly do not

handle jobs that take a large amount of time. If the loop pauses to complete a job that takes a

long time (for example a network connection) the entire GUI stops responding. The natural

response to this situation is to create a separate thread that handles the long job. However, this

causes a problem, as the GUI libraries are not thread safe and when the job tries to re-enter the

event loop it may corrupt other components as they may be in the middle of an update initiated

by the event loop. This leaves a problem in the event loop model. How do you handle events

that take too long to be handled in a single iteration of the event loop? The approach in Java is

to use the event-loop concurrency paradigm. This is most visible in the SwingWorker

mechanism that is available to Swing programmers. This mechanism basically includes a hook

in the event loop that reads events from a queue. When a long job completes it loads itself into

the queue. The event loop then reads the completed jobs off the queue in a sequential fashion

processing them. This avoids the issue of delaying the event loop for long duration jobs. Join

Java interacts nicely with this pattern via the futures pattern presented earlier. For example,

Figure 101 shows an example program that illustrates how one would implement a simplified

version of a SwingWorker style class in Join Java. In the example, you can see the construct

Design Patterns

 154

method that handles the time consuming task (the threading is omitted in this example for

simplicity). When that method completes it calls the completed() fragment. The event loop

periodically calls finished seeking a result. If the completed fragment is not available, the Join

class returns a null otherwise; if the completed fragment is available it returns an object.

A related feature of the event loop concurrency above is that of cancellation or interruption of

concurrent method invocations. At present, the Join Java architecture hides access to thread

mechanisms from the user. That is interrupt calls are not directly available. The SwingWorker

implementation uses interrupt calls to achieve the cancellable future. This was a conscious

decision as the purpose of this thesis was to illustrate the core features of the extension.

Implementation of interruption could be done trivially as a further extension of the syntax.

However, it is still possible to encode a mechanism for terminating active threads in a Join Java

class. As in Java, this would need to be done as a loop check within the thread. Otherwise this

is the same pattern as the futures pattern presented earlier.

Figure 101. Event Loop Concurrency

ordered class JoinSwingWorker {
 public Object construct() {
 //long duration code
 //then call fragment completed()
 completed();
 }

 public Object finished() & completed() {
 //completion code is placed here
 }

 //this method handles the situation when the event loop
 //tries to get a result before the thread is complete
 public Object finished() {
 return null;
 }
}

Design Patterns

 155

5.5 Conclusion
In this chapter, a number of different common patterns in concurrency were examined. The

first section described design patterns relating to synchronization such as scoped locking,

strategized locking, thread safe interfaces and double check locking optimization. The second

section examined patterns that deal more with representation of concurrency such as, active

objects, monitor objects, half-sync/half-async, leader/follower and thread specific storage. The

final section examined a selection of simple concurrency mechanisms that are commonly seen

in concurrent applications, for example semaphores, timeouts, channels, producer/consumer,

bounded buffer, reader writers and thread pools. Each of these patterns was implemented in

both Join Java and Java. Whilst the coding of these problems is subjective (how many ways are

there to code a thread pool?) in general the Join Java solutions were more succinct the higher

the level of the problem. That is if you implement low-level mechanisms such as monitors or

shared variables in Join Java the extension is less effective. However, if you implement higher-

level mechanisms such as thread pools the solutions in Join Java are a lot shorter and easier to

understand than that of the Java solutions.

It can be seen from the examples in this chapter that the structure of Join Java allows message

passing to be easily implemented between different processes without having to concern oneself

with the low-level details of the implementation. The simple addition of Join methods and the

asynchronous return type allowed us to represent better the standard set of design patterns for

concurrency and synchronization. With the higher-level abstraction of communications and

synchronization, that Join Java provides it can be supposed that a number of the low-level

patterns will be required less. This would be due to people making direct conversions of

higher-level problems to higher-level concurrency semantics. Presently programmers who wish

to allow threads to communicate must create a shared variable then organize the locking of the

shared variable then write the code to modify the shared variable. In the case of Join Java, it is

just a matter of creating the Join method to represent the communication path that the

programmer wishes to establish. The Join Java language better represents higher-level

concurrency problems by giving the program additional tools for expressing synchronization. It

was shown that Join Java could express virtually all the concurrency patterns presented by

Schmidt (2000). The strength of the Join Java pattern implementations is the merging of the

channel structure and the synchronization mechanism.

Design Patterns

 156

It was also shown that the Join Java extension is especially good at patterns that involve

communication between threads. This chapter forms a basis of comparison of both execution

time and code length for the benchmarking chapter.

157

6

Concurrency Semantics

Smalltalk is object-oriented, but it should have been message oriented.

(Alan Kay Creator of Smalltalk)

Table of Contents

6.1 INTRODUCTION 158
6.2 STATE CHARTS AND DIAGRAMS 159
6.3 PETRI-NETS 165
6.4 CONCLUSION 173

Concurrency Semantics

 158

6.1 Introduction

In this chapter, two formalisms are examined and how they can be translated directly into Join

Java code. By implementing these examples, Join Java is shown to be fully capable of

expressing these more formal process semantics. State diagrams (including start charts) are

firstly examined showing how they map directly into the Join Java semantics. Petri nets are

examined second, again showing how they map into the Join Java. Finally, some conclusions

are made regarding Join Java’s ability to express concurrency.

Concurrency Semantics

 159

6.2 State Charts and Diagrams

Many systems exhibit dynamic behaviour where their reaction is based upon previous events.

This ordering of states and transitions can be represented by state charts and state diagrams. In

the next two sub-sections, it will be shown how these formalisms can be translated to Join Java.

6.2.1 State Diagrams

State diagrams represent a system as a series of states (circles) connected by transitions (arcs

connecting states). A transition usually indicates the condition in which the system will change

from a given state to another state connected by the transition. Being graphs, a common

representation is an adjacency matrix. These adjacency matrices are interrogated when an event

occurs and a shared variable indicating the current state is updated. Applications that use state

diagrams represent the transition as introducing data into the system. For example, in a state

machine representing an automatic teller the transition deposit-money would introduce the

amount into the depositing state. This leads us to a disadvantage of the normal adjacency

matrix representation. The transitions within an adjacency matrix are represented by changes in

position within the structure. There is no mechanism to introduce data directly into the

destination state when making the change. To achieve this, additional data has to be provided

or control structures to support the input of “parameters” need to be written. In Join Java, this

mechanism is supported via parameters of a Join fragment.

Join Java makes the conversion of state diagrams to an object-oriented syntax representation

straightforward. The Join Java example here uses Mealy machine (Mealy 1954) interpretation

where executing code in the body is associated with a state transitions rather than the state itself.

When coding a Join method to represent a transition the Join fragments encode the transitions.

Within the Join method, a call to the destination state is made to indicate the new state. To

illustrate, Figure 102 shows a graph representing a basic transition from state A to state C the

code representing this state change is shown in Figure 103.

Concurrency Semantics

 160

This could be read as transition x can be completed when and only when the machine is in state

A. When the method is executed the Join fragment (Which could also be called a token) A

representing the state is consumed and a new Join fragment C is created, that is the machine is

now in state C.

Branching is carried out by introducing a rule for each transition out of a state. Using Figure

104 as an example an additional transition (A to B) is added to the transition that was previously

mentioned. The appropriate rule b() & A() { B() } is formed. Now if the machine is in state A.

The decision which Join method to call (and hence what state to transition to) is made at run

time by the occurrence of the call (transition) to either x() or b(). In the event of two calls being

made at the same time the system selects the first call that is given priority by the pattern

matcher. The system only checks for matches when the pattern matcher is notified of a change

in the waiting fragments. In other words the runtime system is reactively checking for matches

only when the state of the pool changes.

Figure 103. State Transition

Figure 102. Simple State Transition Diagram

ordered class StateDiagram {
 void x() & A() {
 C();
 }
}

Concurrency Semantics

 161

Figure 104 shows a state diagram with states A, B and C and transitions a, b, x and y. One Join

method per transition (or edge) and an error method to absorb any transition calls made when

the machine is not in the correct state only need to be written. The completed code that

represents the full state diagram in Figure 104 is given in Figure 105. It can be seen that in the

code below that there is a direct mapping between transitions and methods. It also needs to set

the initial state (In this case state A) and hence the starting state of the machine. This is done by

calling A() in the constructor. Also note the usage of the ordered class modifier; this is used to

make sure the transition methods are fired first if possible in preference to the error methods at

the end of the class.

Figure 104. State Diagram

Concurrency Semantics

 162

6.2.2 State Charts

Similarly, state charts (Harell 1987; Harell, Pnueli et al. 1987) are an extension of the state

diagram formalism. It adds three basic elements, hierarchy, concurrency and communication to

that of the basic state diagram mechanism. Figure 106 shows a state chart with a number of

charts containing state diagrams. Each state chart can have an independent state diagram. Arcs

from one state chart to another state chart imply that you may transition from any state within

the state chart to the initial state of a destination state chart. The charts act as higher level of a

state hierarchy. A line segmenting a chart implies an and relationship between the two sub-

states. For example, for the C transition to occur you must be in states D or E and A or B.

State charts can be converted to Join Java by adding the inter-chart transformations as additional

Join fragments in each transition. Figure 106 gives a state chart in which is described via the

Figure 105. State Diagram Join Java Code

\\note the ordered modifier. this means
\\match the first pattern that is defined
\\in preference
ordered class StateDiagram {
 //constructor
 StateDiagram() {
 //constructor sets initial state
 A();
 }
 void x() & A() {
 //code to execute on transition x
 C(); //call to destination state
 }
 void b() & A() {
 //code to execute on transition b
 B(); //call to destination state
 }
 void a() & B() {
 //code to execute on transition a
 A(); //call to destination state
 }
 void y() & C() {
 //code to execute on transition y
 B(); //call to destination state
 }
 //if one of the patterns above does not
 //match these will match.
 //this removes calls that get called
 //when the machine is not in the correct
 //state
 //These could be modified to throw an appropriate
 //exception if you wish to trap incorrect transitions
 void x() {}
 void b() {}
 void a() {}
 void y() {}
}

Concurrency Semantics

 163

Join Java code in Figure 107.

The initial state is represented by calls in the constructor. In state charts, as there is an extra

level of abstraction, additional Join fragments needs to be added to show which chart contains

active states. Using the example in Figure 106 it can be seen that there is a transition between D

and E called y. This transition resides within chart inD. Therefore the condition for transition y

to be called is that the state chart is in state D and in chart inD. As a Join method it is y() & D()

& inD(). The important point in this example is that when a transition occurs from one chart to

another one needs to use up any state information left in the state space. In the case of transition

c (inD to inB) one must have the inD token as well as the possibility of a D or an E state. The

pool must be cleaned of any unused state information. This is done by creating Join patterns

that will consume anything that is left in the event that state machine departs from specific state

chart. In the inD chart the machine needs to consume both the D and E states. This is

Figure 106. State Chart

Concurrency Semantics

 164

illustrated in Figure 107 below where leaveD() & D() and leaveD() & E() Join methods dispose

of any state information that is left. Figure 107 shows the complete code for the state chart in

Figure 106. A more object-oriented approach of abstracting the charts is to build a new class

for each individual chart. the object can be thrown away when the machine moves to another

chart. This removes the necessity of cleaning the pool as the machine leaves a specific chart.

Figure 107. State Transition Join Java Code

ordered class StateChart {
 //constructor
 StateDiagram() {
 //constructor sets initial state
 D();
 A();
 inD();
 inA();
 }

 void y() & D() & inD(){
 //code to execute on transition y
 E(); //call to destination state
 inD(); //make sure it is still in
 //sub-state inD
 }

 void x() & A() & inA(){
 //code to execute on transition x
 B(); //call to destination state
 inA(); //make sure it is still in
 //sub-state inA
 }

 void c() & inA() & inB() {
 //create a new state chart
 inBClass ds = new inBClass();
 //code to execute on transition a
 ds.F(); //call to destination state
 inB(); //make sure it is still in
 //sub-state inA
 LeaveA();
 LeaveB();
 }

 //clean up/take unused state
 //info out of pool
 void LeaveA() & A() {}
 void LeaveA() & B() {}
 void LeaveB() & D() {}
 void LeaveB() & E() {}
 void x() {}
 void y() {}
}

Concurrency Semantics

 165

6.3 Petri-Nets

Petri nets (Petri 1962) are similar to state charts in that they allow the dynamics of a system to

be modelled graphically. In addition, the Petri nets can be represented mathematically allowing

more rigorous examination of system properties.

A Petri net is composed of four structures, a set of places, a set of transitions, a set of input

functions and a set of output functions (relative to the transition). The structure and hence the

behaviour of the modelled system is defined by the configuration of places, input functions,

output functions and transitions. Places can contain a token that will allow a transition to occur

if and only if there are tokens waiting on all other inputs to that transition. A detailed coverage

of Petri net theory can be found in (Peterson 1981).

6.3.1 Structures

Diagrammatically Petri nets have circles indicating places, blocks indicating transitions and arcs

between places and transitions indicating input and output functions. Figure 108 illustrates the

different symbols of a Petri net.

In Figure 108 there are three places named P1, P2 and P3. Two input functions I1 and I2, A

transition T1, and a single output function O1. In this case if there are tokens waiting in both

P1 and P2 then a transition T1 will be executed and a single token will be placed in P3

removing a token from both P1 and P2.

Figure 108. Simple Petri Net

Concurrency Semantics

 166

As in the state chart implementations, there exists a straightforward transformation for

converting a Petri net implementation into a Join Java program. As Petri nets are transition

centered the translation is almost direct. In the examples presented, it can be assume that the

transitions fire immediately they are enabled.

In the next two sections will cover two different types of Petri nets. Firstly, unbounded Petri

nets, these nets allow multiple tokens to exist in the places at any one time. The second type

covered will be one-bounded place Petri nets; these networks only allow one token per place in

the network.

6.3.2 Unbounded Petri nets

Unbounded Petri nets whilst being the more complex than bounded Petri-nets are the easiest to

implement in Join Java. One needs to produce a method for each transition. The Join method is

composed of the places tokens must exist (preconditions). Each Join method will only be fired

when at least one token exists in each of the input places. The body of the Join method contains

the post conditions such as the destination place as well as any side effects that the transition

may entail.

6.3.2.1 An Example in Join Java

Using Figure 109 as an example, it can be seen that there are tokens available on both places P1

and P2. This allows transition T1 to fire (calls to both P1 and P2 are available in the pool).

The method will consume P1 and P2 tokens and create a P3 token. Figure 110 shows the state

of the Petri net after the transition. The code for this Petri net (Figure 111) shows how one

would write the code to represent this net.

Figure 109. Non-Bounded Petri Net before Transition

Concurrency Semantics

 167

Figure 110. Non-Bounded Petri Net after Transition

6.3.3 Bounded Petri nets

One-bounded Petri nets are similar to unbounded Petri nets except that any one place can only

have one token. This means in a one-bounded Petri net a transition will not fire if there is a

token already waiting in the output place of the transition.

Figure 111. Non-Bounded Petri Net Join Java Code

final class PetriNet {
 //transition 1
 signal P1() & P2() {
 P3(); //P3 has now got a token
 }
 signal P3() {
 P4(); //P4 has now got a token
 P5(); //P5 has now got a token
 }
 signal P4() {
 //No transitions out of this
 }
 signal P5() {
 //No transitions out of this
 }
}

Concurrency Semantics

 168

6.3.3.1 An Example in Join Java

A one bounded buffer Petri net based on the unbounded Petri net in Figure 109 is used. In a

bounded Petri net there is the requirement that the destination place not have a token residing in

it when the transition is triggered. In the Join Java implementation this is handled by having a

"not" token indicating the lack of a token in the destination place. In other words, a place will

have either a token (which shares the name of the place) or a not-token.

Translation of Figure 112 is a matter of taking each transition and place and converting them

into a method. Using transition T1 of the figure as an example places are defined that must

have tokens; in this case P1 and P2. P3 is specified as it must be empty (i.e. a not-token).

Therefore the condition on which T1 will be activated is if P1() & P2() & notP3(). Once the

condition for the execution of the T1 transition is defined, the post condition is then specified

for the transition. In this case, P3 has a token P1 and P2 are empty. That is notP1(), notP2()

and P3(). Figure 113 shows the code for the entire Petri net. Note that in addition to the

transitions the network needs to be initialized. This is done via the constructor that initializes

the Petri net to the starting state. The definitions of any terminal places are also required to be

specified as (places with no output transitions) normal methods.

Figure 112. Bounded Petri Net Example

Concurrency Semantics

 169

It should be noticed that in this example the return types of the methods are signal. The caller

of the method does not wait for execution of the Join method to complete successfully. The

other point to note is that the methods do not pass arguments in the example provided. By

adding arguments and return types to the Join methods, information can be passed between

places (via the transitions). Conceivably this allows the application of the technique to more

than just elementary Petri nets. There are a number of non-elementary style Petri nets such as

coloured Petri nets (Jensen 1986) that this language could support via arguments in the Join

fragments. However, in this thesis the examples have been restricted to covering only

elementary Petri nets.

6.3.4 Partial Three Way Handshake Petri net

A more complex example of Petri nets in Join Java is provided in Figure 114. This diagram

shows a Petri-net illustrating the opening stages of a TCP three way handshake from the point

Figure 113. Bounded Petri Net Join Java Code

final class PetriNet {
 //Constructor sets up initial state
 //of PetriNet
 //In this case tokens in places 1,2 and 5
 PetriNet() {
 P1();
 P2();
 notP3();
 notP4();
 P5();
 }
 //Transition 1
 signal P1() & P2() & notP3() {
 notP1(); //P1 is now empty
 notP2(); //P1 is now empty
 P3(); //P3 has now got a token
 }
 //Transition 2
 signal P3() & notP4() {
 notP3(); //P3 is now empty
 P4(); //P4 has now got a token
 }
 //Transition 3
 signal P3() & notP5() {
 notP3(); //P3 is now empty
 P5(); //P5 has now got a token
 }
 void P4() {
 //end of net
 }
 void P5() {
 //end of net
 }
}

Concurrency Semantics

 170

of view of the client. In this example, the system starts in the CLOSED place and attempts to

transition to the ESTABLISHED place. The line that travels clock-wise around the diagram

indicates the normal path of a client making a connection to a server. The LISTEN place is the

point that the server would normally wait. For the sake of brevity, only the client’s path is

covered. This diagram is more complicated as it has unnamed places indicated by light grey

dots. Additional labels, SSYN1, SSYN2, SYNACK1 and RSYNACK1 are provided in order

to make coding of the Petri net in Join Java easier. If these places were omitted, the transitions

on each side would have to be combined together into a single transition possibly changing the

meaning of the net. The aim of this net is to step through the process of hand shaking between a

client and a server on a TCP connection. The advantage of having a complicated handshaking

protocol is that it reduces the chance of confusion between the client and server in respect to

which state the other machine currently resides. In the event of a problem, the client and server

will return to the CLOSED place.

Using the first transition it can be seen that when Connect is enabled the token moves from

CLOSED to SSYN1. To convert this into Join Java the requirements of the transition are

stated as a conjunction of Join fragments. That is the state is in place CLOSED and transition

Connect is enabled, in Join Java this would be Connect(Socket) & CLOSED(). The post

conditions are then stated, in this case a token resides in place SSYN1, in Join Java this would

Figure 114. Partial Three Way Handshake

Concurrency Semantics

 171

be SSYN1(Socket). As completed code, the Join Java method would look like Figure 115.

Two points should be noted in this example. Firstly, the method Connect(Socket) passes

arguments into the Join method. These arguments allow the new place to receive information

about the current connection via arguments in the call to the Join fragment SSYN1(Socket). This

information would be useful in a full implementation, as the system would need to record

socket information in order to communicate with the server. Secondly, the "not" token is not

Figure 115. Petri Net Join Java Method

Figure 116. TCP Handshake Class (part a)

signal Connect(Socket x) & CLOSED() {
 SSYN1(x); //place SSYN1 has now got the token
}

class Socket {}

ordered class TCPHandShake {
 //These methods are called from outside
 //Connect(Socket);,SYNACK();
 //Constructor
 TCPHandShake() {CLOSED();}
 //Transition (1) from CLOSED place to
 //SSYN1 place.
 signal Connect(Socket x) & CLOSED() {
 //send syn to server
 //when complete call SYN()
 //to show that the message
 //has been sent
 //send syn to server
 SYN();
 SSYN1(x); //SSYN1 place has now got
 //the token
 }
 //Transition (2) from SSYN1 place to
 //SYNSENT place.
 //The SYN() method in this transition
 //would be called by the network software
 //when the syn is received.
 signal SYN() & SSYN1(Socket x) {
 SYNSENT(x);
 }
 //Transition (3) from SYNSENT place to
 //RSYNACK1 place.
 signal SYNACK() & SYNSENT(Socket x) {
 //send ack to server
 //when complete call ACK()
 //to show that the message
 //has been sent
 //send ack to server
 ACK();
 RSYNACK1(x);
 }
}

Concurrency Semantics

 172

required in this implementation as there will only ever be one token in the network and hence

there is no need to worry about checking for tokens in the destination places.

Figure 116 and Figure 117 shows the full class containing all the transitions required for a

successful negotiation between a client and server. As usual, there is need to include the

constructor that would initialize the Petri net. The method calls SYN(), SYNACK(), and ACK()

in a real implementation would be more complicated as they would need to signal the success or

failure of the packet that is sent or received from the server.

This example illustrates how the conditions can be set for progress through the network by

adding methods that an external agent may use. In this case the Connect(Socket) method above

would be called by some external agency (perhaps the user clicking on the connect button in a

User Interface). This would allow the network to fire and transition to the second place in the

network. Each place in the network would either send a message and move to the next place or

wait for the receipt of a message from outside. Again, the ordered keyword is used to handle

the messages that arrive in the incorrect order by returning the token to the CLOSED place. In

this case the token is sent back to the start position by calling CLOSED(). It is assumed that all

transitions once enabled will fire immediately.

Figure 117. TCP Handshake Class (part b)

 //Transition (4) from RSYNACK1 place to
 //ESTABLISHED place.
 signal ACK() & RSYNACK1(Socket x) {
 ESTABLISHED(x);
 }
 //ESTABLISHED place
 signal ESTABLISHED(Socket x) {
 // client code to handle
 // application
 Close(x);
 // to start of close sequence
 }
 //commence close procedure
 void Close(Socket x) {}
 //Any other return to CLOSED place
 signal Connect(Socket x) {CLOSED();}
 signal SYN() {CLOSED();}
 signal SYNACK() {CLOSED();}
 signal ACK() {CLOSED();}
}

Concurrency Semantics

 173

6.4 Conclusion

This chapter shows how the formalisms such as state charts and Petri-nets could be mapped

directly into the Join Java language without violating object-oriented precepts such as data

hiding. For instance, state charts are able to encapsulate each chart as an object that can call the

methods in another Join Java object. This means when a state is finished it can be thrown away

and the simulation continues. If the system is to re-enter a state it can create a new instance of

the state. This is commensurate with the object-oriented paradigm where objects are routinely

created and destroyed during runtime. In this chapter, it can be seen that the Join Java language

extension is expressive enough to represent clearly both of these popular formalisms. In the

next chapter, the succinct representations of concurrency patterns in the previous chapter are

used to show that Join Java is not only very expressive but also sufficiently fast.

174

7

Evaluation

True genius resides in the capacity for evaluation of uncertain, hazardous,
and conflicting information.

(Winston Churchill)

Table of Contents

7.1 INTRODUCTION 175
7.2 PERFORMANCE 176
7.3 EXTENSION EVALUATION 182
7.4 CONCLUSION 189

Evaluation

 175

7.1 Introduction

In this chapter, the Join Java language will be evaluated against a standard Java implementation.

This chapter approaches the evaluation of the Join extension in two ways. Firstly, a quantitative

evaluation in the form of benchmarking is carried out comparing Join Java programs to that of

Java programs of similar functionality. This section also examines the compilation speed of the

base and extension compilers. Finally, the section looks at factors that affect the speed of the

compiler. Secondly, a qualitative evaluation based on an existing evaluation framework is

undertaken. The compiler will be evaluated in light of the evaluation criteria specified by

(Bloom 1979). Three qualitative criteria are adopted from Bloom. These criteria are

modularity, expressive power and ease of use. These criteria are used to evaluate the Join Java

extension in light of the standard Java language. This section makes mostly subjective

evaluations of Join Java using the criteria. However, as part of this section an objective

comparison of Join Java in terms of lines of code vs. Java lines of code is made. The chapter

finishes by giving an overview of the findings.

Evaluation

 176

7.2 Performance

In this section, an objective measurement of the speed of patterns implemented in the Join Java

extension as compared against those implemented in standard Java is undertaken. This section

uses the patterns introduced in Chapter 5 as a basis for the performance comparisons.

As with any higher-level language extension it must be expected that some form of performance

penalty due to the overheads involved in doing the additional processing will be incurred. A

performance penalty will also be paid on any prototype implementation as it is still targeted at

the standard Java platform JVM that has no optimizations for the extension. This is discussed

further in the conclusion of this chapter.

For the sake of a proof of concept implementation of the language extension the pre-calculated

pattern matcher described in section 4.4.2.2 is used for the benchmarking. This extension has a

greater start-up time but operates faster once the program is running. It also has a larger

memory footprint than the other pattern matcher implementations.

7.2.1 Pattern Benchmarks

Table 8 shows the results of running the patterns in Join Java versus the patterns in Java. It can

be seen that on average the reduction in speed is approximately 30%. Most of these patterns

were tested with approximately 10,000 iterations each. The platform these benchmarks were

run on was the Sun Java 1.4 JVM running on a 2 GHz Pentium4, 512 Meg memory, Windows

XP and CYGWIN. Two of the basic low-level concurrency primitives, semaphores and

monitors, are omitted in the benchmarking. This is because Join Java programmers would not

want to implement these patterns using Join Java. If a programmer felt the need to use them,

they would choose the native versions provided by the Java language.

Evaluation

 177

The benchmark results in Table 8 are graphed in Figure 118 where the speed of Join Java vs.

Java can be seen. The Java speed is represented as 100% and the Join Java results are

represented by the bars.

Test Pattern
Java
Time (μs)

Join Java Time
(μs)

Time
Difference %

1 ActiveObject 32,536,786 40,748,593 8,211,807 125%
2 BoundedBuffer 220,316 300,432 80,116 136%
3 Futures 350,504 420,605 70,101 120%
4 HalfSyncHalfASync 280,403 270,388 - 10,015 96%
5 LeaderFollower 771,109 1,442,073 670,964 187%
6 MonitorObject 981,411 1,311,887 330,476 134%
7 ProducerConsumer 650,936 1,081,556 430,620 166%
8 ReaderWriter 851,224 1,873,692 1,022,468 220%
9 ScopedLocking 3,685,299 4,075,861 390,562 111%
10 StratLocking 2,293,297 2,653,816 360,519 116%
11 ThreadPool 250,360 300,432 50,072 120%
12 ThreadSafeInterface 100,136,472 110,241,001 10,104,529 110%
13 Timeout 5,227,517 5,297,617 70,100 101%
14 UniChannels 26,518,131 28,601,126 2,082,995 108%

 Average 132%
Table 8. Join Java vs. Java Benchmarking Results

Join Java Concurrency Patterns Speed

0%

50%

100%

150%

200%

250%

Ac
tiv

eO
bje

ct

Bo
un

de
dB

uf
fe
r

Fu
tu
re
s

Half
Sy

nc
Half

AS
yn

c

Le
ad

er
Fo

llo
wer

M
on

ito
rO

bje
ct

Pr
od

uc
er
Con

su
m
er

Rea
de

rW
rite

r

Sc
op

ed
Lo

ck
ing

St
ra
tLo

ck
ing

Th
re
ad

Po
ol

Th
re
ad

Safe
Int

er
fac

e

Ti
meo

ut

UniC
ha

nn
els

Figure 118. Join Java vs. Java Benchmark Speed (Java = 100%)

Evaluation

 178

7.2.2 Low Level Benchmarks

A set of low-level benchmarks was made on the pattern matcher via a modified version of

CaffeineMark (Software 2003) .

Test Café Test Case Time (ns)
1 Invoke Join instance void->int 110,878
2 Invoke Join instance void->object 115,207
3 Invoke Join instance object->object 117,349
4 Invoke Join instance int->int 119,061
5 Invoke Join instance void->void 114,965
6 Invoke Join instance (signal) 638,588

Table 9. Join Java Cafe Style Results

Test Café Test Case Time (ns)
1 sync method with notify 917
2 sync method with wait 1,240
3 sync method with wait and threading 333,972

Table 10. Java Cafe Style Results

Initial comparison of Table 9 and Table 10 indicates that Join Java is an order of magnitude

slower than that of Java code. This is however, not the case as the Join Java code is doing much

more than the Java code. Consequently, a fair micro-benchmark requires the Java code to

contain threading and wait/notifys. This is done in test 3 of Table 10 where the speed of Java is

approximately 300 μ-seconds whilst the equivalent operation in Join Java as shown in test 6 of

Table 9 is approximately 600 μ-seconds. From this, it can be seen that on average the Join Java

patterns are approximately twice as slow as an equivalent Java method.

7.2.3 Compilation Speed

A number of tests were conducted on the compilation speed of the Join Java compiler vs. that of

the standard Sun Java compiler. It should be recognized that the Sun compiler is a production

compiler optimized for speed whilst the Join Java compiler is optimized for prototyping. For

the benchmarking, we only used standard Java source code, as the Sun JDK is unable to

compile Join Java code. In Table 11 we can see the speed comparison of Join Java vs. Sun

JDK. In general, we can see that the Join Java compiler on average takes approximately 40%

longer to compile a standard Java program than that of the Sun JDK. In the tests, the only

outlying value was that of Layout Tutorial. Even when running tests on a number of other

Evaluation

 179

codes examples very few exceeded the 40% to 50%. The only apparent difference between the

Layout tutorial code (80% longer to compile) and the other examples is that it has significantly

more Java 1.4 API calls. It can be presumed that the extensible compiler (which predates Java

1.4) may not have optimizations for the code being generated for these calls.

Program
Join Java

Time Java Time Penality
LayoutTutorial (Swing Java Tutorial) 2584 1442 179%
JavaOO (Java Tutorial) 1763 1442 122%
NutsAndBolts(Java Tutorial) 1642 1182 139%
Concepts(Java Tutorial) 1753 1382 127%
Data(Java Tutorial) 1933 1442 134%
Collections Algorithms(Java Tutorial) 1943 1432 136%
Events (Swing Java Tutorial) 3906 2594 151%
Security 1.2 (Java Tutorial) 1642 1172 140%
 141%

Table 11. Compilation Speed Join Java vs. Java

7.2.4 Performance Factors

Given the results of our raw Café style tests (Table 9 and of Table 10) and the results from the

concurrency patterns (Table 8 and Figure 118) it can be seen that the Join Java extension in raw

terms is approximately twice as slow for low-level artificial benchmarks but approximately

30% slower for pattern implementations. By extension, it is reasonable to expect that on any

application where the threading is a minor part of the runtime this penalty will shrink further.

In the prototype language, it was identified that in general, program source code length is

shorter but the runtime is slower than that of an equivalent Java program. There are a number

of reasons for the reduction of performance over the standard Java program. Some of these

issues will be dealt with in this section.

1. Overhead of higher-level abstractions: Join Java abstractions are inherently higher level

than that of the standard Java synchronization construct. Java synchronization has no

concept of pattern matching and only provides a simple check and set locking

mechanism. Consequently, the overhead for this is very low. When introducing a

pattern matching mechanism into the synchronization constraints there will be a fixed

overhead that will always be slower than that of the basic Java mechanism.

2. Overhead of using a standard JVM: The Java JVM is optimized to support the standard

Java instruction such as the test and set monitors of the standard Java language. These

Evaluation

 180

are implemented at the byte code level of the JVM. The JVM can then optimize with

full information. The Join Java extension translates to Java that is then executed on the

standard JVM byte code interpreter. This is further complicated by the Java hot spot

just in time compiler, which is optimized for standard Java. It is speculated that the Join

Java language extension defeats optimizations of the hotspot environment. An example

of these limitations is on-stack code replacement (Paleczny, Vick et al. 2001). In a

standard micro benchmark, the JVM will fail to self-optimize due to the optimization

algorithm having an analysis phase and then a optimization phase. Most micro

benchmarks will only run once on the stack for each problem. When the test is finished

the benchmark moves on, not allowing the optimizer to load the optimized compiled

code. This leads to lower than realistic results on the benchmark. The Join Java pattern

matcher works in a similar way and there is a possibility that this would lead to

circumvention of the hotspot optimizations and lower than realistic results.

3. Overhead of using an extensible compiler: Whilst the extensible compiler is an ideal

test platform for prototyping the language there are issues with optimizing extensions.

A purpose built environment would have to yield better results as specialized phases

could be constructed for analysing and optimizing the runtime pattern matcher.

4. Overhead of separating the pattern matcher from the code: At present, the pattern

matcher is a generic code segment that is used for all Join Java programs. The compiler

generates calls to the pattern matcher. This aids in prototyping but does not encourage

optimization.

5. Runtime Optimization: The pattern matchers that were implemented on the Join Java

extension have been simplistic generic mechanisms. Any production compiler would

need to use a much more sophisticated algorithm to reduce the overhead of pattern

matching at runtime. For example, this could be done by using runtime information

from the JVM. At present, due to the pattern matcher being separated not only from the

JVM but also from the actual Join Java class, a lot of this information is not available to

the pattern matcher to make optimizations. A production compiler would need to more

closely link at least the Join Java class to the pattern matcher, preferably also closely

linking the pattern matcher to the JVM so that it can make optimizations below the byte

code level.

Evaluation

 181

6. Boxing/Unboxing: One problem that was noted in the pattern matcher is a limitation

with Java. There is no byte code level support (or optimizations) for boxing and

unboxing base classes. This means that whenever there are base type parameters and

return types in Join fragments they must be wrapped in order to be stored in the pattern

matcher. This creates a huge overhead for the runtime environment, as there is constant

object creation and deletion occurring in the JVM. This means the garbage collector is

carrying out a larger number of mark and sweep operations at shorter intervals. There

are a number of fixes that could be undertaken to reduce the effect of boxing and

unboxing. Firstly, boxes could be reused in much the same way as a thread pool reuses

threads. When a Join method call finishes the boxes that held the arguments are placed

into a pool of free boxes. When a box is required, the boxer goes to the pool and

retrieves a box. If none are available, it creates a new one. This avoids a lot of the

overhead encountered with object creation and deletion. However, there are more

overheads added by the box manager. A second strategy involves generating the pattern

matcher at compile time and avoiding the boxing problem alltogether. If this

mechanism was implemented, a complete rewrite would be necessary for every change

to the pattern matcher algorithm.

Evaluation

 182

7.3 Extension Evaluation

In the previous section, the Join Java language extension was quantitatively benchmarked

against the standard Sun Java compiler. In this section, the Join Java extension is evaluated

qualitatively using Bloom’s criteria. The three criteria are:

1. Modularity: Bloom considers resources to be objects of abstract types. Consequently,

there is a set of operations that are associated with the resource. This assumption leads

to a design that modularizes the concurrency mechanism using some form of

encapsulation. Bloom says that for modularity to be achieved users using a resource

should be able to assume that the resource is synchronized and they should not need to

provide synchronized code to access the resource.

2. Expressive Power: A concurrency synchronization mechanism must be expressive

enough to represent priority and exclusion constraints. If the synchronization

mechanism is not expressive enough then it will not be able to express the entire domain

of concurrency problems. A way of testing the expressive power is to implement a

complete set of problems that cover access, timing, parameters, state and history

information. If they can be constructed the mechanism provides sufficient expressive

power.

3. Ease of Use: Is the concurrency mechanism expressive enough to express individually

the problems presented above? In addition, does the mechanism separate the

implementation of each of the constraints? If it does not separate these constraints,

complex synchronization schemes become hard to implement due to interactions of the

implementation of each of the separate constraints.

These criteria are a test of the abstraction criteria. The criteria are covered in more depth in the

following sections where the Join Java language extension will be evaluated using these criteria.

7.3.1 Modularity

Bloom’s criteria calls for the concurrency to be modular. That is, its implementation should be

separate or separable from the rest of the implementation. This aids in making the software

easy to understand and more maintainable. In object-oriented languages, it was identified that

modularity (see section 2.4.1) is implicitly achieved via encapsulation. Encapsulation is in turn

supported by the class structure. Consequently, it is reasonable to expect that one possible

Evaluation

 183

solution to modularity would be to make use of the class structure of the language to modularize

concurrency. Join Java achieves this in a number of ways.

1. Firstly, concurrency is integrated into the language at the method level with pattern

matching achieved at the method level. This means that concurrency interaction is

localized at the object level where each object has an implicitly separate pattern matcher

from other objects.

2. Secondly, Join Java supports the idea of implementing concurrency separate from the

implementation of synchronization (see section 3.4.3.3). This can be achieved using

interfaces to specify the Join fragments with the implementer of the interface specifying

the Join methods. Consequently, the pattern matcher is specified separately from the

implementation of the fragments that are in turn separable from the implementation of

the threads. This is sympathetic to Bloom’s requirement that for modularity to be

implemented the implementation of concurrency should be separate from the definition.

3. Thirdly, Join methods can have specific access rights. This means that the Join methods

set to private can only be accessed within the class, reducing coupling to other

components to the system improving modularity. This mechanism supports Bloom’s

other requirement that the synchronization mechanism should be separate from the

resource that the synchronization mechanism is protecting. Bloom’s paper is effectively

implying that the synchronization mechanism is a wrapper around the unsynchronized

resource.

It can be seen from this subjective evaluation of the Join Java that the extension clearly supports

the idea of modularity.

7.3.2 Expressive Power

The second requirement Bloom identified was the idea of expressive power. That is, how well

the concurrency mechanism expresses the standard concurrency problems. Bloom was more

specific with his evaluation of expressive power by indicating two constraints that must be

observed in a concurrency mechanism. These constraints are priority constraints and exclusion

constraints. The evaluation of this requirement has been pursued in two ways. Firstly, the Join

extension is examined in light of the Bloom criteria. Secondly, an empirical examination of the

extension is conducted via a large set of concurrency patterns, specifically looking at the

number of lines of code needed to express each standard problem.

Evaluation

 184

7.3.2.1 Priority Constraints and Exclusion

Join Java supports a simple form of priority constraints based on the ordering of Join methods

within the class definition. Patterns defined first implicitly gain priority over later defined

patterns. Whilst this mechanism is simplistic possible extensions to this policy are examined in

future work (section 8.3). Bloom’s second constraint is that of exclusion. Join Java supports

exclusion with the explicit use of Join fragments before a Join method body is executed. The

non-existence of a Join fragment call excludes any Join method that contains that Join fragment

from executing. Whilst this is not as clear as having an explicit exclusion operator it does

demonstrate the capability of the extension to support exclusion.

7.3.2.2 Concurrent Pattern Evaluation

In addition to the subjective evaluation of the Join Java extension, concurrency patterns were

implemented in both Join Java and standard Java. These have already been described in

Chapter 5. In this chapter, these examples are used to examine how many lines each

implementation takes.

All the concurrency and synchronization patterns covered in (Schmidt 2000) are shown in Table

12 (patterns used for synchronization) and Table 13 (patterns normally used for concurrency).

In these tables, the double-checking locking optimization was omitted due to the JVM

instruction reordering optimization issued described previously. Finally, a number of standard

concurrency problems are covered in Table 14. Each table shows the lines of code for the

concurrency pattern implemented in both Join Java and Java. The table also shows the

percentage difference and the recommended approach if the sole object is to minimize lines of

code.

Evaluation

 185

Name Join Java
LOC

Java
LOC

%
Difference

Recomme
nd

Scoped Locking 7 15 47% Join Java
Strategized Locking 74 80 93% Join Java
Thread Safe Interfaces 32 22 145% Java
Double Check Locking Optimization X X X Neither

Table 12. Patterns for Synchronization Lines of Code

Patterns for Synchronization

0

10

20

30

40

50

60

70

80

90

Scoped Locking Strategized Locking Thread Safe Interfaces

Li
ne

s
of

 C
od

e

Join Java LOC
Java LOC

Figure 119. Patterns for Synchronization Java vs. Join Java

In Table 12 and Figure 119 the three major patterns are shown for synchronization (according to

(Schmidt 2000)). The only pattern that required less lines of code in Java was that of thread

safe interfaces. This pattern is more naturally implemented in Java using the monitors already

supplied. In this case, the Join Java solution is emulating the features that Java’s monitor

construct already provides.

Evaluation

 186

Name Join Java
LOC

Java
LOC

%
Difference Recommend

Active Object 11 15 73% Join Java
Futures 15 29 52% Join Java
Monitor Object 26 20 130% Java
Half-Sync/Half-Async 49 85 58% Join Java
Leader/Follower 34 47 72% Join Java

Table 13. Patterns for Concurrency Lines of Code

Patterns for Concurrency

0

10

20

30

40

50

60

70

80

90

Active Object Futures Monitor Object Half-Sync/Half-
Async

Leader/Follower

Li
ne

s
of

 C
od

e

Join Java LOC
Java LOC

Figure 120. Patterns for Concurrency Java vs. Join Java

In Table 13 and Figure 120, it can be seen that virtually all the patterns can be expressed more

succinctly in Join Java than Java. The only exception being the monitor object pattern that is

already implemented in Java. Consequently, any Join Java implementation is bound to be more

complicated than the explicit implementation of the Java implementation. It should be noted

that the Join Java implementation very easily allows parameters to be passed consequently this

higher-level abstraction of monitor objects might be in fact be preferable. Examining the

remaining patterns, it can be seen that all patterns are more succinct than the Java equivalents.

On average, the Join Java implementations are more than 35% shorter than the Java equivalent.

Evaluation

 187

Name Join Java
LOC

Java
LOC

%
Difference Recommend

Semaphores 15 24 63% Join Java
Timeouts 37 30 123% Either
Channels 5 22 23% Join Java
Producer Consumer 45 64 70% Join Java
Bounded Buffer 19 29 66% Join Java
Readers Writers 66 85 78% Join Java
Thread Pool (Workers) 37 55 67% Join Java

Table 14. Simple Concurrency Mechanisms Lines of Code

Simple Concurrency

0

10

20

30

40

50

60

70

80

90

Semaphores Timeouts Channels Producer
Consumer

Bounded
Buffer

Readers
Writers

Thread Pool
(Workers)

Li
ne

s
of

 C
od

e

Join Java LOC
Java LOC

Figure 121. Simple Concurrency Java vs. Join Java

For completeness, in addition to the patterns suggested by (Schmidt 2000), a number of

standard problems in concurrency are examined that were not covered previously. Table 14

and Figure 121 list these patterns. It can be seen that in all cases, except that of timeouts the

Join Java code is significantly shorter than the Java equivalent program. The timeout code is

longer due to the limitation of Join Java not having a mechanism for backing out of a Join

fragment call. The code to get around this limitation requires a few extra Join methods to be

written at the end of the class definition. Overcoming this weakness is suggested in the future

work chapter (section 8.3). Overall, there is a code size reduction of on average 20%.

Evaluation

 188

7.3.3 Ease of Use

The third requirement Bloom identified was that the expression should be easy to use. By this

Bloom means that synchronization constraints should be separate from each other. As was

identified in the previous section there are two types of synchronization constraints: priority and

exclusion constraints. Bloom’s criterion says the more independent these constraints are the

more easy to use the synchronization construct is. This is the case in Join Java because priority

is associated with the ordered modifier and exclusion with the Join methods.

Evaluation

 189

7.4 Conclusion

In this chapter, the Join Java extension was qualitatively and quantitatively evaluated in relation

to Java using Blooms criteria and various benchmarking tools.

In the first part of the chapter, the relative performance of Join Java programs was examined in

relation to similar problems written in Java. It was shown that Join Java in the prototype

implementation is slower by approximately 30%, This is considered to be an acceptable penalty.

Finally, the reasons for the current performance were examined and possible improvements to

increase the extension speed were suggested.

In the second part of the chapter, the Bloom criteria were used to analyse how good a

synchronization mechanism the Join Java language is. It was found that overall the Join Java

extension fulfils the criteria. The expressiveness of the language was also examined by

analysing the relative lengths of programs written in Java and Join Java. It was found that in

nearly all cases the Join Java program was more succinct. It was also noticed that in terms of

lines of code the higher-level the concurrency pattern being implemented had bigger differences

between the relative low-level implementation of the Java and the high-level implementation of

Join Java. This matches with the design criteria of Join Java that it should make the expression

of high-level concurrency patterns easier and shorter.

190

8

Conclusion

Once, after finishing a picture, I thought I would stop for a while, take a trip,
do things -- the next time I thought of this, I found five years had gone by.

(Willem de Kooning)

Table of Contents

8.1 INTRODUCTION 191
8.2 CONTRIBUTIONS 194
8.3 FUTURE WORK 199
8.4 CONCLUDING REMARK 201

Conclusion

 191

8.1 Introduction

In this chapter, the contributions that have been made to the field of concurrent programming

languages are examined. Finally, how this research can be further extended is suggested.

In this thesis, some weakness with the existing implementations of concurrency in object-

oriented languages was shown. It was seen how the use of low-level primitives in object-

oriented languages are the modern equivalent of goto statements. Weaknesses in Java’s

implementation of monitors with its lack of protection of the lock in the synchronized block

were identified. It was found that a higher-level abstraction for representing concurrency,

synchronization and communication is needed in mainstream concurrent object-oriented

languages. This thesis aimed at finding that higher-level abstraction. However, a number of

excellent languages have already been suggested that at least partially achieve this aim. These

proposals in general are not mainstream as they are academic by nature only illustrating the

concepts that the research wanted to show, and not suitable for production level software

engineering. Therefore, it is necessary to take an existing popular production language and

minimally change it so that it supports the extension but also allows programmers to use their

familiar programming tools. To this end, a popular production object-oriented language was

chosen to demonstrate the requirements. This thesis identified eight requirements (see Section

3.3) that must be maintained in order to successfully modify an existing language. These

requirements are faithfulness, increased robustness, performance, minimalist design, backward

compatibility, message passing, true superset and hidden locks. Each of these requirements is

now justified with respect to the Join Java extension.

1. Faithfulness: The Join Java extension makes use of existing semantic structures within

the language. For instance, Join fragments are based upon the idea of a method

signature. They work identically and are interchangeable when being called by non Join

Java aware classes. When the Join calculus introduced a concept that was not

sympathetic to the object-oriented paradigm of Java it was eliminated from the design.

For example, the Join calculus supports the idea of a reply to construct which allows a

Join method to send return values to several calls from the same method call. This is

cognitively different from what imperative programmers are familiar with, consequently

it was not included in Join Java.

2. Increased Robustness: The Join Java language prototype is stable and predictable (when

using the ordered modifier). It has provided an integrated mechanism for

Conclusion

 192

communication between threads with integrated locking that is not inadvertently

modifiable by the programmer.

3. Performance: In section 7.2 it was seen that Join Java whilst being slightly slower than

Java still has acceptable performance in the prototype. It was also noted that when

measuring the speed of realistic applications the delay fell even further to the point of

not being noticeable. It was also pointed out how to improve the performance of a

production version of the language.

4. Minimalist Design: As the language extension is based on a well-known and popular

language, the Join Java extension must be made minimal in order to avoid the cognitive

load of learning altered language dynamics. The changes to the language were also

localized to only two places within the language. That is the modifiers for a class and

the method signatures. The rest of the language works exactly as it does in the base

language.

5. Backward Compatibility: Join Java is a superset of Java so this means that any program

written in Java is compilable and runnable in Join Java. All Java concurrency semantics

are available in Join Java although in most cases are not recommended to be used. This

means that a programmer can make a gradual change to the Join Java semantics.

6. Message passing mechanism that complements the method call techniques of serialized

applications: The Join pattern component of Join methods gives us a channel formation

mechanism that not only mirrors that of normal method calls, it also adds the extra

feature of being dynamic in nature.

7. True superset: Language extension should not interfere with the base language method

of communication between threads. The Join Java extension is a true superset of the

Java language, and no existing feature of the language is disabled to allow the Join Java

extension to be integrated. The only restriction of making Join Java classes final only

affects classes written with Join Java methods.

8. Locks for communications channels will be hidden from the programmer: This

requirement was partially achieved. When a programmer is using the Join Java

extension to communicate between threads the lock is hidden from the user. However,

if the programmer uses synchronized blocks and shared variables from the base

Conclusion

 193

language the lock is still visible. This is required to meet the other requirements on this

list.

In the design patterns and applications chapter it was shown how the introduction of a relatively

simple language modification increases the expressiveness of the language. It was shown how

the Join Java extension could be used to convey any expression in standard Java in Join Java

and in the vast majority of cases have less lines of code. The prototype implementation was

shown to have acceptable performance penalties and those penalties were analysed to show how

further improvements could be made on a production implementation.

The Join Java language extension fills the gap between the low-level concurrency and

synchronization constructs of production languages and the high-level descriptions of

concurrency patterns. It does this by providing higher-level abstractions of concurrency that

include both an explicit communications mechanism and a method of synchronization of code

segments. Due to the localization of synchronization to the method signatures and

communication channel selection to the class level it is easier to handle by the programmer. If

examined in relation to classic synchronization mechanisms such as semaphores and Java’s

implementation of monitors, which have poor locality, it can be seen that the Join Java approach

is preferable. In addition, neither monitors nor semaphores have communications semantics, as

they are simple locking mechanisms. It is usually up to the programmer to provide the

communications mechanism via the low-level semantics of the language. This generally leads

to success of the implementation being purely a function of the skill of the programmer.

Conclusion

 194

8.2 Contributions

In this section, each of research contributions to the field is identified. There have been a

number of general contributions made by this research. Firstly, the provision of high-level

concurrency constructs into Java has been demonstrated. An alternative thread communications

mechanism to that of the standard shared memory area mechanism used by other object-

oriented language was described. Thread integration in Java has been improved allowing

threads to be created via a simple asynchronous method call rather than via the external library

that is used in the standard Java language. Finally an investigation of how by making minimal

changes to a production language higher-level concurrency can be provided for mainstream

programmers. During the course of this research, a number of specific contributions were

made. These contributions are discussed in more detail in the following sections.

8.2.1 Support for Higher-Level Abstractions at Language Level

This research identified that concurrency abstractions are generally low-level in nature in

mainstream production languages. This deficiency leads to scalability problems as most

production concurrent object-oriented languages use low-level wait/notify style mnemonics to

indicate locking. There generally is no communications mechanism, instead relying on shared

memory paradigm in which the locks protect access. Programmers are required to write code to

protect the communications mechanism on their own. However, concurrency patterns are high

level in nature and are written in terms the programmer understands. The programmer must

then translate the patterns into the low-level concurrency semantics of the programming

language in order to implement the patterns. In Section 2, this gap between the low-level

implementations in the languages and the high-level descriptions of concurrency patterns was

identified. It was proposed that the languages should provide a high level set of abstractions

that make the mapping of design patterns to code more straightforward. A set of criteria for

evaluating abstractions for concurrency based on Kafura’s properties (that an abstraction is well

named, coherent, minimal and complete) was proposed. It was found that the Join Java

extension is generally consistent with these properties. The second property coherence

demands that the attributes and behaviours are expected given the situation. This is supported

by using the abstractions of methods and method calls. The third property minimalism of the

abstraction has been supported by only making minimal modifications to the language to

support the functionality that is required. The fourth property completeness requires that the

abstraction have enough flexibility to model the domain in which it models. In this case,

communication and synchronization is the domain that is being modelled and the criteria is

Conclusion

 195

satisfied as any concurrency problem can be expressed in it. This is illustrated in Chapter 5 and

Chapter 6, which shows a wide sot of concurrency expressions. Finally, it was shown how this

abstraction supports higher-level abstractions of concurrency better in the design pattern

(Chapter 5) where nearly all patterns were expressed in less code. It also was demonstrated in

the applications chapter where it was found that two popular process semantics could be

modelled with almost a mechanical style transformation.

8.2.2 Introduction of Dynamic Channel Creation Semantics into

Java

In addition to standard communications between threads, a mechanism of runtime decisions on

where communications will travel was provided. The combination of pattern matching and Join

fragments allows dynamic communications channels to be formed at runtime. This is achieved

by reusing Join fragments in several patterns. When calls to those fragments are waiting then

the decision on which pattern to execute is made at the time the remaining fragments are called.

In this way, a program can decide which pattern to dispatch via the selection of which Join

fragments to call. This mechanism is a simple yet powerful mechanism for threads to cooperate

in solving higher-level patterns.

8.2.3 Improved Thread Integration in Java

Java’s thread mechanism is implemented using a specialized class (Thread). When a user

wishes to create an additional asynchronous process they need to either create a subclass with a

run method that overrides thread class method or pass a specially defined class containing a run

method. These methods are non-parameterized consequently, the programmer must make use

of global shared memory compromising encapsulation. In the language extension, the idea of

asynchronous methods was introduced to Java. These methods are equivalent to standard

methods with the exception that once called the caller is released to immediately continue.

Consequently, the complicated mechanism of thread creation in Java is replaced by a more

straightforward asynchronous return type. Whilst a minimal addition to the language, it

improves the conciseness of the language and supports the creation of asynchronous patterns

(eg non-blocking first fragments).

Conclusion

 196

8.2.4 Implementation of Process Calculus Semantics into a

Production Language

This thesis demonstrated how to implement the semantics from a process calculus (Join) into a

mainstream programming language. Whilst this Join calculus has been implemented in other

languages, they have been generally only experimental languages. Many of these

implementations are more extensive in their adoption of the host process semantics but they

tend to be either non-object-oriented or non-mainstream. The Join calculus was selected mostly

due to its superior expressiveness to that of other process calculi. It also has explicit

synchronization via the conjunction of guard style semantics. The Join calculus is sympathetic

to the extensive scoping semantics of object-oriented languages. Explicit synchronization is

sympathetic to the programming style of most mainstream languages.

8.2.5 Implementation of a Set of Patterns in a New Concurrent

Language Join Java

This thesis implemented a number of concurrency patterns in the Join Java extension. These

implementations investigated the capability of the Join Java extension to express a sufficiently

diverse set of concurrency problems. It was found that Join Java can express them and in

general, they are produced in less lines of code than standard Java. Consequently, it is clear that

the thesis has succeeded in showing that Join Java is a superior semantic for expressing higher-

level abstractions of concurrency. The investigation concluded with benchmarking of the

runtime speeds of the patterns in comparison to that of standard Java implementations. The

performance of the prototype was found to be acceptable in virtually all cases. A number of

optimizations were suggested for the design of a potential production version of the language.

8.2.6 Close Integration into the Syntax and Semantics of the Base

Language

Most high-level abstraction implementations are either library based or an entirely new

language that demonstrates the concurrency concepts that the authors are experimenting with.

Library based implementations suffer from a number of limitations. Firstly, they are implicitly

right hand side operations that is they are dependant on the programmer calling a method or

assigning a value to indicate some state change. They then need to call a concluding library

function to indicate the closure of that state. This leads to situations where programmers forget

to either open or close the state leading to flaws in the program. Compilation errors sometimes

Conclusion

 197

are reported as coming from the library extension rather than the source code complicating

debugging. By integrating semantics into the syntactic level of the language, the possibility of

these flaws being inadvertently created is reduced. Creating a new language is another option.

However, it is hard to get programmers to adopt these new languages. It is also a cognitive

overhead in getting users to learn an entire new set of syntax and semantics for the sake of

improving one language feature. It makes more sense to retrofit an existing language as long as

the extension does not interfere with the cognitive models the programmer has for the rest of the

language. Consequently, it is a good idea to make the concurrency model fit into the design

criterion of the rest of the language. Thus, our extension used Java as a base language to

demonstrate the new extension.

8.2.7 Reduction of Dependency on Low-Level Concurrency

Primitives

If the use of low-level concurrency primitives such as wait and notify is reduced in the Java

language the possibility of errors in concurrent programs is reduced. The use of wait/notify

primitives in the Java language violate the encapsulation component of the object-oriented

language. The violation of encapsulation also implies the use of side effect code that violates

the idea of high cohesion and low coupling. By abstracting the wait/notify semantics out of the

language and hiding these within the channel abstraction, side effect code is reduced and thus

formalizing the communications mechanisms between threads.

8.2.8 Reduction of Reliance on the Low-Level Synchronization

Keywords in Java

By supplying a thread communication mechanism that is implicitly synchronized, the necessity

of threads requiring synchronized code blocks is removed. Whilst the low-level nature of the

synchronized primitive is on occasion preferred due to the simplicity or optimization, it will

rarely be required when using Join Java. There is an advantage in using a Join fragment as

compared to using a synchronized modifier in a method. You can pass parameters within a Join

fragment. This allows locks to pass information between locking operations. A disadvantage

of Join Java is that you need to recall the fragment at the end of the method in order to release

the lock. This leads to the possibility of dead lock errors if the programmer forgets to recall the

Join fragment.

Conclusion

 198

8.2.9 Parameterized Monitors/Parameterized Threads.

As has already been illustrated, thread creation in Join Java is simple. To create a thread in Join

Java you only need to nominate the asynchronous return type and when called the method is the

semantic equivalent of a normal running Java thread. What’s more, the language encourages

encapsulation by limiting access to thread contents via the standard access modifiers. As the

semantics of the method are used to create the threads in Join Java, the threads implicitly have

full access to the range of features such as parameterization and ad-hoc polymorphism. The

Join Java thread mechanism is more convenient than the existing class based non-ad-hoc thread

implementations.

8.2.10 Investigation of Pattern Matchers and Potential

Optimizations

Finally, an initial survey of possible pattern matching algorithms was undertaken. Hybrid

pattern matchers are examined and the possibility of compilation-by-compilation generation of

pattern matching was explored.

Conclusion

 199

8.3 Future Work

Whilst undertaking this research a number of potentially interesting extensions of the work have

been identified. Many of these form extensions to the language itself and the analysis of the

interactions with standard object-oriented language. In this section each of these possible future

research possibilities are covered in more detail.

8.3.1 Back-Outs and Lock Checking

One feature that presented itself as being useful in Join Java is a method of checking if a Join

method would finish if a method were called. This would allow the caller to check for a

possible completion before committing to the call. The second option is Linda style features

such as lock checking (tuple check without remove). Both these language features would

reduce the lines of code needed to solve some concurrency patterns.

8.3.2 Multi-Directional Channels

A Join calculus feature that was not implemented in the Join calculus was the concept of “reply

to” which is implemented in the original language implementations of (Maranget and Fessant

1998). As has already been stated this was omitted due to cognitive considerations of the

programming environments. The advantage of implementing the reply-to construct is that the

advantage of multi-directional channels can be used. Multi-directional channels allow the

programmer to exchange information between two threads in two directions at the same time.

At present the Join Java language will only allow information to flow from the callers of the

Join fragments to the caller of the first Join fragment (if it is a non-asynchronous/non-void

type). Implementation of this would be an interesting problem, as it would require a significant

amount of reworking in the architecture of the compiler. It would however, once implemented,

reduce the length of a number of concurrency patterns by a significant amount with requisite

increase in cognitive overhead to the programmer.

8.3.3 Inheritance

One issue that has been avoided in this thesis is the inheritance issues involved in implementing

concurrency in an object-oriented language. Once inheritance is enabled, a number of

interesting topics of research would emerge. What is the interaction of Join methods with

inheritance? Can pattern matchers be inherited or would they be composable in the subclass?

Conclusion

 200

8.3.4 Expanding Pattern Matching

Whilst a small number of pattern matchers were examined, there is scope to explore fully which

pattern matchers are the best for this task. One could also explore how to generate custom

pattern matchers at compile time that are optimized for the particular set of patterns of the class

being compiled. Secondly, the language could be extended with a mechanism in which the

programmer can select other pattern matching policies apart from ordered.

8.3.5 Hardware Join Java

Current work being done by John Hopf is to extend the Join Java compiler to support hardware

development for software programmers (Hopf, Itzstein et al. 2002). Hopf has used the high-

level semantics of Join Java combined with support for reconfigurable hardware descriptions in

VHDL to create a compiler that generates FPGA cores. The Hardware Join Java compiler also

generates the driver for the software hardware interface.

Conclusion

 201

8.4 Concluding Remark

The Join Java extension to Java shows great promise as a higher-level abstraction of

concurrency for what are normally considered high-level languages. Up to this point

production object-oriented languages have been limited by low-level primitives for

concurrency. Programmers must learn the art of balancing safety with speed. An overly

cautious programmer will usually generate a serialized program. Whilst a programmer coding

for speed will not be surprised if they are confronted with their program occasionally entering

unsafe states due to unprotected shared code. This thesis has shown with a minimal change to a

language a much more powerful semantic for expressing high-level concurrency patterns hence

helping programmers build safer code.

202

9

Index

Any sufficiently advanced technology is indistinguishable from magic.

(Arthur C Clarke)

ABCL/1, 33, 38, 39, 40
ABCL/C+, 38, 39, 40
ABCL/R, 33, 38, 39, 40
Abstraction, 11, 14, 24
ACP, 17
Act 1, 33, 38, 39, 40
Act 2, 33, 38, 39, 40
Act 3, 33, 38, 39, 40
Act++, 34
Actalk, 34
Active Object Language, 29, 125, 126, 186
Active Objects, 126
Actors, 29, 30, 40
Ada, 3, 27, 31, 38, 39, 40, 57
Algol 68, 32

Alog, 29, 38, 39, 40
API, 98
AST, 73, 74, 76, 77, 78, 80, 81, 82
Asynchronous methods, 43
Backend, 77
backward compatibility, 56, 82, 191
Benchmarking, 106, 177
Bloom, 13, 175, 182, 183, 184, 188, 189
Bounded Buffer, 145, 146, 147, 187
Bounded Petri Net, 166, 167, 168, 169
Boxing, 94, 111, 181
C, 3, 4, 19, 20, 25, 27, 31, 32, 34, 36, 38, 39, 40, 41, 43,

44, 45, 60, 61, 66, 93, 103, 107, 159, 160, 161
C++, 3, 4, 25, 27, 31, 32, 34, 36, 38, 39, 40, 41
CA, 40

Index

 203

Café, 178
Calculi, xi, 18, 21, 196
CCS, xi, 17
Channels, 41, 140, 187
Class, 28, 60, 171, 172
Compilation Speed, 178, 179
Concurrency, xi, xii, 3, 11, 12, 14, 15, 16, 23, 26, 30, 31,

32, 38, 49, 55, 57, 125, 136, 157, 186, 187,
197

Concurrency Abstraction Hierarchy, 15, 16
Concurrent Eiffel, 38, 39, 40, 41
Concurrent Object Oriented Languages, 27, 32, 37
Contributions, 8
CSP, xi, 17, 31, 32, 33, 38, 39, 40, 41, 57
Deadlock, 66
Design Patterns, 113
Dispatch, 87
Double Checking Locking Optimization, 185
Eiffel, 36
Encapsulation, 23, 24, 46, 182
Evaluation, 174, 182, 184
Expressive Power, 182, 183
Extensible Compiler, 72, 73, 78
faithfulness, 191
Family Tree of Object Oriented Languages, 25
Futures, 126, 127, 177, 186
Get Methods, 51
Half-Sync/Half-Async, 129, 132, 133, 186
hidden locks, 191
Higher Level, xii
History, 25
Hybrid, 33, 34, 38, 39, 40, 198
Imperative, 8
increased robustness, 191
Inheritance, 63, 66, 199
Inheritance Anomaly, 66
Interfaces, 64, 65
IPC, 41, 57
Java Triveni, 34
JCSP, 4, 31
JoCaml, 35, 38, 39, 40, 41
Join Calculus, 17, 18, 19, 20, 21
Join Class, 101
Join Fragment, 84, 96, 97
Join Method, 43, 59, 79, 89, 126
Join Pattern, 61, 136, 163
Join Syntax, 18
JSE, 71
JSR-166, xi, 4
JVM, 49, 56, 98, 111, 124
Kafura, 11, 12, 13, 32, 34, 194
Language extension, 56, 192
Leader/Follower, 134, 135, 186
Lisp, 29, 33, 34
Locality, 21
Lock, 110, 199
Lock Parameter Association, 110
Lower Level, 178
Mainstream, 31, 39
Maya, 71
Mealy, 159
message passing, 5, 6, 8, 20, 22, 23, 26, 42, 46, 55, 57,

60, 140, 155, 191

Message passing mechanism, 56, 192
Microsoft .Net, 93
minimalist design, 191
Modifiers, 23
Modularity, 182
Monitor Object, 53, 128, 129, 186
Monitors, 14, 23
Motivation, 3
MuC++, 32, 38, 39, 40, 41
Multi-Directional Channels, 109, 199
Notify, 54, 88
Object, xi, 3, 4, 5, 6, 8, 10, 17, 18, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 32, 33, 34, 37, 46, 54, 55, 56,
63, 65, 66, 67, 73, 94, 101, 125, 150, 159, 164,
173, 191, 194, 196, 199, 201

Object Oriented, xi, 3, 4, 8, 22, 24, 25, 26, 27, 28, 30,
34, 37, 54, 199, 201

Object Oriented Languages, 25, 30
OCCAM, 32, 38, 39, 40, 41
Omega, 33
Operational Semantics, 20
Overloading, 63
Parameterized Monitors, 198
Pattern Matcher, 98, 101, 104, 105, 198
Performance, 55, 176, 179, 192
Petri Net, 165
Plasma, 29, 33, 34, 38, 39, 40
Plasma II, 29
Polyadic, 18
Polymorphism, 24, 65
Polyphonic C#, 43, 44, 45
Process Calculi, 17
Processes, xi, 18, 21
Producer/Consumer, 141, 187
Readers Writers, 147, 187
Reduction, 197
Reusability, 24
Sather, 25
Scoped Locking, 115, 116, 185
Semantics, 19, 47, 49, 55, 59, 195, 196
Semaphores, 14, 23, 41, 136, 137, 149, 187
Set Methods, 51
Signal, 84
Silent Semantic Analyses, 97
Simula, 3, 4, 22, 25, 26, 32, 38, 39, 40
Simula 67, 32
Smalltalk, 34, 157
Smart, 29, 33, 38, 39, 40
SML/NJ, 36
State Chart, 159, 162, 163
State Diagram, 159, 161, 162
State Space, 103, 107
State space explosion, 107
Strategized Locking, 116, 118, 119, 120, 121, 185
Studio, 34, 38, 39, 40
Superset, 31
Synchronization, 13, 32, 35, 36, 37, 51, 59, 62, 115,

185, 197
Synchronized Keyword, 5, 52
Synchronous Names, 20
SyncRings, 38, 39, 40, 41
Syntax, 18, 47, 60, 196
Tao, 32, 38, 39, 40

Index

 204

Thread Safe Interfaces, 121, 185
Timeouts, 138, 187
Translator, 72
Triveni, 34, 38, 39, 40, 41
true superset, 191, 192

Type System, 63
Unboxing, 102, 181
Wait, 53
Wait/Notify, 53
Workers, 150, 151, 152, 187

205

10

References

I don't believe in personal immortality; the only way I expect to have some
version of such a thing is through my books.

(Isaac Asimov)

Agha, G. A. (1986). ACTORS: A Model of Concurrent Computation in Distributed Systems,
Cambridge Press, MA.

Aho, A., R. Sethi, et al. (1986). Compilers: Principles, Techniques and Tools, Addison Wesley.

Andrews, D. (1998). Survey Reveals Java Adoption Plans. Byte Magazine. 3: 26,30.

Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Programming,
Addison Wesley Longman, Inc.

References

 206

Attardi, G. and M. Simi (1981). Consistency and Completeness of OMEGA, a Logic for
Knowledge Representation. Proceedings of the Seventh International Joint Conference
on Artificial Intelligence. International Joint Conferences on Artificial Intelligence,
Menlo Park California.

Bachrach, J. and K. Playford (2001). The Java syntactic extender (JSE). Proceedings of the 16th
ACM SIGPLAN conference on Object oriented programming, systems, languages, and
applications, Tampa Bay Florida, ACM Press New York, NY, USA.

Bacon, D., J. Bloch, et al. (2002). The double checked locking is broken,
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html.
2004.

Baeten, J. C. M. and C. Verhoef (1995). Concrete Process Algebra. Handbook of Logic in
Computer Science. S. Abramsky, D. M. Gabbay and T. S. E. Maibaum. Oxford, Oxford
University Press. 4.

Baker, J. and W. C. Hsieh (2002). Maya: multiple-dispatch syntax extension in Java.
Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design
and implementation, Berlin, Germany, ACM Press New York, NY, USA.

Bakkers, A., G. Hilderink, et al. (1999). A Distributed Real-Time Java System Based on CSP.
Architectures, Languages and Techniques. B. M. Cook. Broenink Control Laboratory,
IOS Press. citeseer.nj.nec.com/245642.html.

Benton, N. (2004). "Modern Concurrency Abstractions for C#." ACM Transactions on
Programming Languages and Systems, 26(5): 769-804.

Bergstra, J. A. and J. W. Klop. (1985). "Algebra of communicating processes with abstraction."
Theoretical Computer Science 37(1).

Berry, G. (1993). Preemption in Concurrent Systems. FSTTCS'93 Lecture Notes in Computer
Science, Springer Verlag.

Berry, G. and G. Boudol (1992). "The Chemical Abstract Machine." Theoretical Computer
Science 1(96): 217-248.

Black, A. P., M. Carlsson, et al. (2001). Timber: A Programming Language for Real-Time
Embedded Systems. Beaverton Oregon, Pacific Software Research Center Computer
Science and Engineering Department Oregon Health and Science University.

Bloom, T. (1979). Evaluating Synchronization Mechanisms. Proceedings of the Seventh
Symposium on Operating Systems Principles.

References

 207

Booch, G. (1987). Software Components with Ada: Structures, Tools, and Subsystems. Menlo
Park, California, Benjamin/Cummings Publishing Company, Inc.

Briot, J.-P. (1989). Actalk: A Testbed for Classifying and Designing Actor Languages in the
Smalltalk-80 Environment. ECOOP 89.

Brookes, S. D., C. A. R. Hoare, et al. (1984). "A theory of communicating sequential
processes." Journal of ACM 31(4): 560--599.

Buhr, P. A. (1992). "muC++ Annotated Reference Manual." Version 4.8.

Buhr, P. A., M. Fortier, et al. (1995). "Monitor Classification." ACM Computing Surveys 27(1):
63-107.

Campione, M., K. Walrath, et al. (2000). Java Tutorial, Addison-Wesley Professional.

Carriero, N. and D. Gelernter (1989). "Linda in Context." Communications of the ACM 32(4):
444-458.

Chatterjee, A. (1989). FUTURES: a mechanism for concurrency among objects. Proceedings of
the 1989 ACM/IEEE conference on Supercomputing, Reno, Nevada, United States,
ACM Press.

Chien, A. A. (1990). Concurrent Aggregates: Supporting Modularity in Massively Parallel
Programs, Compiler for CM5 and workstations. San Diego, University of California San
Diego.

Colby, C., L. Jagadeesan, et al. (1998). Design and Implementation of Triveni: A Process-
Algebraic API for Threads + Events. International Conference on Computer Languages.
1998, IEEE Computer Press.

Colby, C., L. Jagadeesan, et al. (1998). "Objects and Concurrency in Triveni: A
Telecommunication Case Study in Java."

Crnogorac, L., A. Rao, et al. (1998). Classifying Inheritance Mechanisms in Concurrent Object-
orinted Programming. ECOOP'98 - European Conference on Object Oriented
Programming, Springer - Lecture Notes in Computer Science 1445.

Dahl, O.-J. and E. Dijkstra, W. (1972). Structured Programming, Academic Press.

Dahl, O.-J. and K. Nygaard (1966). "SIMULA--An ALGOL-based simulation language."
Communications of the ACM 9(9): 671--678.

References

 208

Demaine, E. D. (1997). Higher-Order Concurrency in Java. Parallel Programming and Java,
Proceedings of WoTUG 20. A. Bakkers. University of Twente, Netherlands, IOS Press,
Netherlands. 50: 34--47.

Dijkstra, E., W. (1968). "Go To Statement Considered Harmful." Communications of the ACM
11(3): 147-148.

Dijkstra, E., W. (1968). "The structure of the “THE”–multiprogramming system."
Communications of the ACM 11(5): 341-346.

Dijkstra, E., W. (1972). "The Humble Programmer." Communications of the ACM 15(10): 859-
866.

Dijkstra, E. W. and C. S. Scholten (1990). Predicate Calculus and Program Semantics,
Springer-Verlag.

Doi, N. and e. al (1988). An Implementation of An Operating System Kernel using Concurrent
Object Oriented Language ABCL/c+. ECOOP'88.

Fessant, F. M. F. L. and S. Conchon (1998). Join Language Manual, INRIA
(http://pauillac.inria.fr/join).

Fidge, C. (1994). A Comparative Introduction to CSP, CCS and LOTOS. Brisbane, University
of Queensland: 49.

Fournet, C. and G. Gonthier (1996). The reflexive CHAM and the join-calculus. Proc. 23rd
Annual ACM Symposium on Principles of Programming Languages, ACM Press.
January: 372--385.

Fournet, C., G. Gonthier, et al. (1996). "A Calculus of Mobile Agents." Lecture Notes in
Computer Science 1119.

Fournet, C., C. Laneve, et al. (2000). Inheritance in the Join Calculus. FST TCS 2000:
Foundations of Software Technology and Theoretical Computer Science. S. Kapoor and
S. Prasad. New Delhi India, Springer-Verlag. 1974: 397-408.

Fournet, C. and L. Maranget (1998). Join-Calculus Language Manual Release 1.03, INRIA
(http://pauillac.inria.fr/join).

Gagnon, E. (2002). A Portable Research Framework For The Execution of Java Byte Code.
School of Computer Science. Montreal, McGill University: 153.

Gelernter, D. (1985). "Generative Communication in Linda." ACM Transactions on
Programming Languages and Systems 7(1): 80-112.

References

 209

George, L., D. MacQueen, et al. (2000). Standard ML of New Jersey. New Jersey.

Glabbeek, R. J. v. (1986). Bounded nondeterminism and the approximation induction principle
in process algebra, CWI.

Goldberg, A. and D. Robson (1983). Smalltalk-80: The and language and its implementation.
Reading, Massachusetts, Adison-Wesley.

Gosling, J. and H. McGilton (1996). The Java Language Environment, Sun Microsystems
Computer Company.

Guerby, L. (1996). Ada 95 Rationale. Online Ada Manual. Oust France. 2002.

Hadjadji, A. (1994). STUDIO - A Modular, Compiled, Actor-Oriented Language, Based Upon
a Multitask Runtime System. Joint Modular Languages Conference, ULM.

Hansen, P. B. (1999). "Java's Insecure Parallelism." ACM SIGPLAN Notices 34 (April)(4): 38-
-44.

Hardgrave, B. C. and D. E. Douglas (1998). Trends in Information Systems Curricula: Object-
Oriented Topics. Association for Information Systems 1998 Americas Conference.

Harell, D. (1987). "A visual formalism for complex systems." Science of Computer
Programming 8(3): 231-274.

Harell, D., A. Pnueli, et al. (1987). On the formal semantics of state charts. Proceedings 2nd
IEEE Symp. Logic in Computer Science, Ithaca, NY.

Hewitt, C. (1976). Viewing Control Structures as Patterns of Passing Messages, MIT AI Lab.

Hewitt, C. (1985). "Linguistic Support of Receptionists for Shared Resources." LNCS 197: 330-
359.

Hilderink, G., J. Broenink, et al. (1997). Communicating Java Threads. Parallel Programming
and Java, Proceedings of WoTUG 20. A. Bakkers. University of Twente, Netherlands,
IOS Press, Netherlands. 50: 48--76.

Hoare, C. A. R. (1974). "Monitors: An operating system structuring concept." Communications
of the ACM 17(10): 549-557.

Hoare, C. A. R. (1980). Communicating Sequential Processes. On the Construction of Programs
-- An Advanced Course. R. M. McKeag and A. M. Macnaghten. Cambridge, Cambridge
University Press: 229--254.

Hoare, C. A. R. (1985). Communicating Sequential Processes, Prentice Hall.

References

 210

Holmes, D. (1995). Synchronisation Rings, Macquarie University, Department of Computing.

Holub, A. (2000). If I were king: A proposal for fixing the Java programming language's
threading problems, IBM.

Hopf, J., G. Itzstein, Stewart, et al. (2002). Hardware Join Java: A High Level Language For
Reconfigurable Hardware Development. International Conference on Field
Programmable Technology, Hong Kong.

Hudson, S. (1996). LALR Parser Generator for Java. Georgia, Georgia Institute of Technology:
CUP.

IEEE (1992). Threads Extension for Portable Operating Systems.

Inmos, L. (1984). Occam Programming Manual. Englewood Cliffs, NJ, Prentice Hall Int.

Intel (2004). Hyper-Threading Technology (www.intel.com developer). 2004.

Jarvinen, H.-M. and R. Kurki-Suonio (1991). DisCo Specification Language: Marriage of
Actions and Objects. 11th International Conference on Distributed Computing Systems.
Arlington Texas, IEEE CS Press: 142--157.

Jensen, K. (1986). "Colored Petri-nets." Lecture Notes in Computer Science 254(Advances in
Petri-nets): 248-299.

JobNet (2004). Job Trends in IT, JobNet.

Jones, S. P. (2003). Haskell 98 Language and Libraries, Cambridge University Press.

Jones, S. P., J. Hughes, et al. (1998). Report on the Programming Language Haskell 98: A Non-
strict, Purely Functional Language., Yale.

Kafura, D. (1989). ACT++: Building a Concurrent C++ With Actors, VPI.

Kafura, D. (1998). Object Oriented Software Design and Construction, Prentice-Hall, Inc.

Kafura, D., M. Mukherji, et al. (1993). "ACT++: A Class Library for Concurrent Programming
in C++ using Actors." Journal of Object-Oriented Programming 6(6).

Kahn, K. and e. al (1990). "Actors as a Special Case of Concurrent Constraint Programming."
SIGPLAN Notices 2510(ECOOP/OOPSLA '90).

Kurki-Suonio, R. and H.-M. Jarvinen (1989). Action System Approach to the Specification and
Design of Distributed Systems. Proceedings of the Fifth International Workshop on
Software Specification and Design, ACM Press: 34--40.

References

 211

Lea, D. (1998). Concurrent Programming in Java. Reading, MA, USA, Addison-Wesley.

Lea, D. (2002). JSR 166: Concurrency Utilities, http://www.jcp.org/en/jsr/detail?id=166. 2003.

Levine, T. (1998). "Deadlock control with Ada95." ACM SIGAda Ada Letters XVIII(1094-
3641): 67--80.

Lieberman, H. (1981). Concurrent Object Oriented Programming in Act1. Object Oriented
Concurrent Programming. A. Yonezawa and e. al, MIT Press.

Lim, C. C. and A. Stolcke (1991). Sather language design and performance evaluation.
Berkeley, International Computer Science Institute.

Lomet, D. (1977). Process structuring, synchronization, and recovery using atomic actions.
ACM Conf. on Language Design for Reliable Software, Raleigh, NC, SIGPLAN
Notices Springer-Verlag.

Mapping, A. and R. Team (1994). Programming Language Ada: Language and Standard
Libraries, Intermetrics.

Maranget, L. and F. l. Fessant (1998). Compiling Join Patterns. HLCL '98 in Electronic Notes
in Theoretical Computer Science. U. Nestmann and B. C. Pierce. Nice, France, Elsevier
Science Publishers. 16.

Maranget, L., F. L. Fessant, et al. (1998). JoCAML Manual, INRIA
(http://pauillac.inria.fr/jocaml).

Matsuoka, S., K. Wakita, et al. (1990). Synchronization Constraints With Inheritance: What Is
Not Possible - So What Is? Department of Information Science University of Tokyo.

Matsuoka, S. and A. Yonezawa (1993). Analysis of Inheritance Anomaly in Object-Oriented
Concurrent Programming Languages. Research Directions in Concurrent Object-
Oriented Programming. P. Agha, P. Wegner and A. Yonezawa, MIT Press: 107-150.

Matthews, S. (2002). CS237 Concurrent Programming Course Notes.
http://www.dcs.warwick.ac.uk/people/academic/Steve.Matthews/cs237/.

Mealy, G. H. (1954). "A Method of Synthesizing Sequential Circuits." Bell System Technical
Journal 34(5): 1045 -- 1079.

Meyer, B. (1988). Object Oriented Software Construction. Engelwood Cliffs New Jersey,
Prentice Hall.

Meyer, B. (1997). Concurrency, Distribution,Client-Server And The Internet. Object-Oriented
Software Construction, Prentice Hall.

References

 212

Milner, R. (1980). Calculus of Communicating Systems. New-York, Springer-Verlag.

Milner, R. (1989). Communication and Concurrency. Hertfordshire, Prentice Hall International.

Milner, R., J. Parrow, et al. (1992). "A Calculus of Mobile Processes." Information and
Computation 100(1): 1-40.

Mitchell, S. E. (1995). TAO - A Model for the Integration of Concurrency and Synchronisation
in Object-Oriented Programming, University of York.

Nierstrasz, O. (1987). "Active Objects in Hybrid." SIGPLAN Notices 2212: 243-253.

Nokia (2003). Java API for Nokia phones, Nokia.

Odersky, M. (2000). Functional Nets. Proc. European Symposium on Programming, Springer
Verlag: 1-25.

Odersky, M. (2000). Functional Nets Slides, LAMP EPFL Lausanne Switzerland.

Odersky, M. (2000). Funnel by Example Technical Report, EPFL Lausanne Switzerland.

Odersky, M., C. Zenger, et al. (1999). A Functional View of Join, University of South
Australia.

Paleczny, M., C. Vick, et al. (2001). The Java HotSpot(tm) Server Compiler. Proceedings of the
Java Virtual Machine Research and Technology Symposium (JVM 01).

Parrow, J. and B. Victor (1998). The Fusion Calculus: Expressiveness and Symmetry in Mobile
Processes. LICS'98. Indianapolis, Indiana, IEEE.

Peterson, J. L. (1981). Petri Net Theory and The Modeling of Systems. Englewood Cliffs N.J,
Prentice Hall Inc.

Petitpierre, C. (1998). Synchronous C++: A Language for Interactive Applications. Computer,
IEEE. September 1998: 65-72.

Petitpierre, C. (2000). Synchronous Java, A quick look at synchronous objects, EPFL Lausanne
Switzerland.

Petri, C. A. (1962). Kommunikation mit automaten. Bonn, University of Bonn.

Pons, A. (2002). "Temporal Abstract Classes and Virtual Temporal Specifications for Real-
Time Systems." ACM Transactions on Software Engineering and Methodology 11(3):
291-308.

References

 213

Ramnath, S. and B. Dathan (2003). "Pattern Integration: Emphasizing the De-Coupling of
Software Subsystems in Conjunction with the Use of Design Patterns." Journal of
Object Technology 2(2): 7-16.

Reppy, J. H. (1992). Higher--Order Concurrency. Ithaca, NY, Cornell Univ.

Salles, P. (1984). ALOG Language, Institut de Recherche en Informaique University of
Toulouse.

Salles, P. (1984). Plasma II Language, Institut de Recherche en Informaique University of
Toulouse.

Salles, P. (1989). Smart Programming Language, Institut de Recherche en Informaique
University of Toulouse.

Schanzer, E. (2001). Performance Tips and Tricks in.NET Applications. 2004: A.NET
Developer Platform White Paper.

Schmidt, D. S. (2000). Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Wiley and Sons.

Schneider, F. and G. R. Andrews (1983). "Concepts and Notations for Concurrent
Programming." ACM Computing Surveys 15(1): 3-44.

Schneider, F. and G. R. Andrews (1986). "Concepts for Concurrent Programming." Lecture
Notes in Computer Science 224: 669--716.

Software, P. (2003). CaffeineMark 2.5. Libertyville, IL, Pendragon Software Corporation.

Steele, G., J. Gosling, et al. (1995). The Java Language Specification, Addison-Wesley Pub Co.

Stevens, W. P., G. J. Myers, et al. (1982). Structured design' in Advanced System Development
/ Feasibility Techniques. J. D. Couger, M. A. Colter and R. W. Knapp. New York, John
Wiley: pp 164-185.

Stroustrup, B. (1983). "Adding classes to the C language: An exercise in language evolution."
Software Practice and Experience 13: 139-161.

Sun (1996). Java API Documentation, Sun Microsystems Computer Corporation.

Sun (1996). The Java Language an Overview, Sun Microsystems Computer Company.

Sun (1998). JavaSpaces White Paper, Sun Microsystems.

Sun (2002). The Java Hotspot Virtual Machine, Sun Microsystems: 28.

References

 214

Sutherland, J. (1999). A History of Object-Oriented Programming Languages and their Impact
on Program Design and Software Development,
http://jeffsutherland.com/papers/Rans/OOlanguages.pdf.

Theriault, D. (1983). Issues in the Design of Act2, MIT AI Lab.

Watanabe, T. and e. al (1988). "Reflection in an Object-Oriented Concurrent Language."
SIGPLAN Notices 2311: 306-315.

Welch, P. (1999). "CSP for Java (What, Why, and How Much?)."
http://www.cs.ukc.ac.uk/projects/ofa/jcsp/.

Wellings, A. J., B. Johnson, et al. (2000). "Integrating object-oriented programming and
protected objects in {Ada 95}." ACM Transactions on Programming Languages and
Systems 22(3): 506--539.

Yonezawa, A. (1990). ABCL: An Object-Oriented Concurrent System, MIT Press.

Yonezawa, A. (1992). ABCL/R2 Language. Tokyo, Tokyo Institute of Technology.

Zenger, M. and M. Odersky (1998). Extensible Compiler (Erweiterbare Übersetzer). Karlsruhe,
University of Karlsruhe.

Zenger, M. and M. Odersky (2001). Implementing Extensible Compilers. ECOOP 2001
Workshop on Multiparadigm Programming with Object-Oriented Languages. Budapest.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

